Instability and Non-uniqueness for the 2D Euler Equations, After M. Vishik

Instability and Non-uniqueness for the 2D Euler Equations, After M. Vishik
Author :
Publisher : Princeton University Press
Total Pages : 148
Release :
ISBN-10 : 9780691257532
ISBN-13 : 0691257531
Rating : 4/5 (32 Downloads)

Book Synopsis Instability and Non-uniqueness for the 2D Euler Equations, After M. Vishik by : Camillo De Lellis

Download or read book Instability and Non-uniqueness for the 2D Euler Equations, After M. Vishik written by Camillo De Lellis and published by Princeton University Press. This book was released on 2024-02-13 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential companion to M. Vishik’s groundbreaking work in fluid mechanics The incompressible Euler equations are a system of partial differential equations introduced by Leonhard Euler more than 250 years ago to describe the motion of an inviscid incompressible fluid. These equations can be derived from the classical conservations laws of mass and momentum under some very idealized assumptions. While they look simple compared to many other equations of mathematical physics, several fundamental mathematical questions about them are still unanswered. One is under which assumptions it can be rigorously proved that they determine the evolution of the fluid once we know its initial state and the forces acting on it. This book addresses a well-known case of this question in two space dimensions. Following the pioneering ideas of M. Vishik, the authors explain in detail the optimality of a celebrated theorem of V. Yudovich in the sixties, which states that, in the vorticity formulation, the solution is unique if the initial vorticity and the acting force are bounded. In particular, the authors show that Yudovich’s theorem cannot be generalized to the L^p setting.

Instability and Non-uniqueness for the 2D Euler Equations, after M. Vishik

Instability and Non-uniqueness for the 2D Euler Equations, after M. Vishik
Author :
Publisher : Princeton University Press
Total Pages : 149
Release :
ISBN-10 : 9780691257846
ISBN-13 : 0691257841
Rating : 4/5 (46 Downloads)

Book Synopsis Instability and Non-uniqueness for the 2D Euler Equations, after M. Vishik by : Camillo De Lellis

Download or read book Instability and Non-uniqueness for the 2D Euler Equations, after M. Vishik written by Camillo De Lellis and published by Princeton University Press. This book was released on 2024-02-13 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential companion to M. Vishik’s groundbreaking work in fluid mechanics The incompressible Euler equations are a system of partial differential equations introduced by Leonhard Euler more than 250 years ago to describe the motion of an inviscid incompressible fluid. These equations can be derived from the classical conservations laws of mass and momentum under some very idealized assumptions. While they look simple compared to many other equations of mathematical physics, several fundamental mathematical questions about them are still unanswered. One is under which assumptions it can be rigorously proved that they determine the evolution of the fluid once we know its initial state and the forces acting on it. This book addresses a well-known case of this question in two space dimensions. Following the pioneering ideas of M. Vishik, the authors explain in detail the optimality of a celebrated theorem of V. Yudovich from the 1960s, which states that, in the vorticity formulation, the solution is unique if the initial vorticity and the acting force are bounded. In particular, the authors show that Yudovich’s theorem cannot be generalized to the L^p setting.

Mathematical Aspects of Nonlinear Dispersive Equations (AM-163)

Mathematical Aspects of Nonlinear Dispersive Equations (AM-163)
Author :
Publisher : Princeton University Press
Total Pages : 309
Release :
ISBN-10 : 9781400827794
ISBN-13 : 1400827795
Rating : 4/5 (94 Downloads)

Book Synopsis Mathematical Aspects of Nonlinear Dispersive Equations (AM-163) by : Jean Bourgain

Download or read book Mathematical Aspects of Nonlinear Dispersive Equations (AM-163) written by Jean Bourgain and published by Princeton University Press. This book was released on 2009-01-10 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of new and original papers on mathematical aspects of nonlinear dispersive equations includes both expository and technical papers that reflect a number of recent advances in the field. The expository papers describe the state of the art and research directions. The technical papers concentrate on a specific problem and the related analysis and are addressed to active researchers. The book deals with many topics that have been the focus of intensive research and, in several cases, significant progress in recent years, including hyperbolic conservation laws, Schrödinger operators, nonlinear Schrödinger and wave equations, and the Euler and Navier-Stokes equations.

The Master Equation and the Convergence Problem in Mean Field Games

The Master Equation and the Convergence Problem in Mean Field Games
Author :
Publisher : Princeton University Press
Total Pages : 224
Release :
ISBN-10 : 9780691190716
ISBN-13 : 0691190712
Rating : 4/5 (16 Downloads)

Book Synopsis The Master Equation and the Convergence Problem in Mean Field Games by : Pierre Cardaliaguet

Download or read book The Master Equation and the Convergence Problem in Mean Field Games written by Pierre Cardaliaguet and published by Princeton University Press. This book was released on 2019-08-13 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While it originated in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity. Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit. This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics.

The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations

The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations
Author :
Publisher : American Mathematical Society
Total Pages : 235
Release :
ISBN-10 : 9781470471781
ISBN-13 : 1470471787
Rating : 4/5 (81 Downloads)

Book Synopsis The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations by : Jacob Bedrossian

Download or read book The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations written by Jacob Bedrossian and published by American Mathematical Society. This book was released on 2022-09-22 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover the fundamentals of the Navier-Stokes theory: derivation, special solutions, existence theory for strong solutions, Leray theory of weak solutions, weak-strong uniqueness, existence theory of mild solutions, and Prodi-Serrin regularity criteria. Chapter 6 provides a short guide to the must-read topics, including active research directions, for an advanced graduate student working in incompressible fluids. It may be used as a roadmap for a topics course in a subsequent semester. The appendix recalls basic results from real, harmonic, and functional analysis. Each chapter concludes with exercises, making the text suitable for a one-semester graduate course. Prerequisites to this book are the first two semesters of graduate-level analysis and PDE courses.

Contributions to the Theory of Partial Differential Equations. (AM-33), Volume 33

Contributions to the Theory of Partial Differential Equations. (AM-33), Volume 33
Author :
Publisher : Princeton University Press
Total Pages : 257
Release :
ISBN-10 : 9781400882182
ISBN-13 : 1400882184
Rating : 4/5 (82 Downloads)

Book Synopsis Contributions to the Theory of Partial Differential Equations. (AM-33), Volume 33 by : Lipman Bers

Download or read book Contributions to the Theory of Partial Differential Equations. (AM-33), Volume 33 written by Lipman Bers and published by Princeton University Press. This book was released on 2016-03-02 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: The description for this book, Contributions to the Theory of Partial Differential Equations. (AM-33), Volume 33, will be forthcoming.

Smoothings of Piecewise Linear Manifolds

Smoothings of Piecewise Linear Manifolds
Author :
Publisher : Princeton University Press
Total Pages : 152
Release :
ISBN-10 : 069108145X
ISBN-13 : 9780691081458
Rating : 4/5 (5X Downloads)

Book Synopsis Smoothings of Piecewise Linear Manifolds by : Morris W. Hirsch

Download or read book Smoothings of Piecewise Linear Manifolds written by Morris W. Hirsch and published by Princeton University Press. This book was released on 1974-10-21 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology. Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology. The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure.