Implementation of Finite Element Methods for Navier-Stokes Equations

Implementation of Finite Element Methods for Navier-Stokes Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 168
Release :
ISBN-10 : 9783642870477
ISBN-13 : 3642870473
Rating : 4/5 (77 Downloads)

Book Synopsis Implementation of Finite Element Methods for Navier-Stokes Equations by : F. Thomasset

Download or read book Implementation of Finite Element Methods for Navier-Stokes Equations written by F. Thomasset and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: In structure mechanics analysis, finite element methods are now well estab lished and well documented techniques; their advantage lies in a higher flexibility, in particular for: (i) The representation of arbitrary complicated boundaries; (ii) Systematic rules for the developments of stable numerical schemes ap proximating mathematically wellposed problems, with various types of boundary conditions. On the other hand, compared to finite difference methods, this flexibility is paid by: an increased programming complexity; additional storage require ment. The application of finite element methods to fluid mechanics has been lagging behind and is relatively recent for several types of reasons: (i) Historical reasons: the early methods were invented by engineers for the analysis of torsion, flexion deformation of bearns, plates, shells, etc ... (see the historics in Strang and Fix (1972) or Zienckiewicz (1977». (ii) Technical reasons: fluid flow problems present specific difficulties: strong gradients,l of the velocity or temperature for instance, may occur which a finite mesh is unable to properly represent; a remedy lies in the various upwind finite element schemes which recently turned up, and which are reviewed in chapter 2 (yet their effect is just as controversial as in finite differences). Next, waves can propagate (e.g. in ocean dynamics with shallowwaters equations) which will be falsely distorted by a finite non regular mesh, as Kreiss (1979) pointed out. We are concerned in this course with the approximation of incompressible, viscous, Newtonian fluids, i.e. governed by N avier Stokes equations.

Implementation of Finite Element Methods for Navier-Stokes Equations

Implementation of Finite Element Methods for Navier-Stokes Equations
Author :
Publisher : Springer Verlag
Total Pages : 0
Release :
ISBN-10 : 0387107711
ISBN-13 : 9780387107714
Rating : 4/5 (11 Downloads)

Book Synopsis Implementation of Finite Element Methods for Navier-Stokes Equations by : François Thomasset

Download or read book Implementation of Finite Element Methods for Navier-Stokes Equations written by François Thomasset and published by Springer Verlag. This book was released on 1981 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Finite Element Methods and Navier-Stokes Equations

Finite Element Methods and Navier-Stokes Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 504
Release :
ISBN-10 : 9789027721488
ISBN-13 : 9027721483
Rating : 4/5 (88 Downloads)

Book Synopsis Finite Element Methods and Navier-Stokes Equations by : C. Cuvelier

Download or read book Finite Element Methods and Navier-Stokes Equations written by C. Cuvelier and published by Springer Science & Business Media. This book was released on 1986-03-31 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fundamental Directions in Mathematical Fluid Mechanics

Fundamental Directions in Mathematical Fluid Mechanics
Author :
Publisher : Birkhäuser
Total Pages : 300
Release :
ISBN-10 : 9783034884242
ISBN-13 : 3034884249
Rating : 4/5 (42 Downloads)

Book Synopsis Fundamental Directions in Mathematical Fluid Mechanics by : Giovanni P. Galdi

Download or read book Fundamental Directions in Mathematical Fluid Mechanics written by Giovanni P. Galdi and published by Birkhäuser. This book was released on 2012-12-06 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of six articles, each treating an important topic in the theory ofthe Navier-Stokes equations, at the research level. Some of the articles are mainly expository, putting together, in a unified setting, the results of recent research papers and conference lectures. Several other articles are devoted mainly to new results, but present them within a wider context and with a fuller exposition than is usual for journals. The plan to publish these articles as a book began with the lecture notes for the short courses of G.P. Galdi and R. Rannacher, given at the beginning of the International Workshop on Theoretical and Numerical Fluid Dynamics, held in Vancouver, Canada, July 27 to August 2, 1996. A renewed energy for this project came with the founding of the Journal of Mathematical Fluid Mechanics, by G.P. Galdi, J. Heywood, and R. Rannacher, in 1998. At that time it was decided that this volume should be published in association with the journal, and expanded to include articles by J. Heywood and W. Nagata, J. Heywood and M. Padula, and P. Gervasio, A. Quarteroni and F. Saleri. The original lecture notes were also revised and updated.

Mixed Finite Elements, Compatibility Conditions, and Applications

Mixed Finite Elements, Compatibility Conditions, and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 253
Release :
ISBN-10 : 9783540783145
ISBN-13 : 3540783148
Rating : 4/5 (45 Downloads)

Book Synopsis Mixed Finite Elements, Compatibility Conditions, and Applications by : Daniele Boffi

Download or read book Mixed Finite Elements, Compatibility Conditions, and Applications written by Daniele Boffi and published by Springer Science & Business Media. This book was released on 2008-04-14 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the early 70's, mixed finite elements have been the object of a wide and deep study by the mathematical and engineering communities. The fundamental role of this method for many application fields has been worldwide recognized and its use has been introduced in several commercial codes. An important feature of mixed finite elements is the interplay between theory and application. Discretization spaces for mixed schemes require suitable compatibilities, so that simple minded approximations generally do not work and the design of appropriate stabilizations gives rise to challenging mathematical problems. This volume collects the lecture notes of a C.I.M.E. course held in Summer 2006, when some of the most world recognized experts in the field reviewed the rigorous setting of mixed finite elements and revisited it after more than 30 years of practice. Applications, in this volume, range from traditional ones, like fluid-dynamics or elasticity, to more recent and active fields, like electromagnetism.

Finite Element Methods for Navier-Stokes Equations

Finite Element Methods for Navier-Stokes Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 386
Release :
ISBN-10 : 9783642616235
ISBN-13 : 3642616232
Rating : 4/5 (35 Downloads)

Book Synopsis Finite Element Methods for Navier-Stokes Equations by : Vivette Girault

Download or read book Finite Element Methods for Navier-Stokes Equations written by Vivette Girault and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material covered by this book has been taught by one of the authors in a post-graduate course on Numerical Analysis at the University Pierre et Marie Curie of Paris. It is an extended version of a previous text (cf. Girault & Raviart [32J) published in 1979 by Springer-Verlag in its series: Lecture Notes in Mathematics. In the last decade, many engineers and mathematicians have concentrated their efforts on the finite element solution of the Navier-Stokes equations for incompressible flows. The purpose of this book is to provide a fairly comprehen sive treatment of the most recent developments in that field. To stay within reasonable bounds, we have restricted ourselves to the case of stationary prob lems although the time-dependent problems are of fundamental importance. This topic is currently evolving rapidly and we feel that it deserves to be covered by another specialized monograph. We have tried, to the best of our ability, to present a fairly exhaustive treatment of the finite element methods for inner flows. On the other hand however, we have entirely left out the subject of exterior problems which involve radically different techniques, both from a theoretical and from a practical point of view. Also, we have neither discussed the implemen tation of the finite element methods presented by this book, nor given any explicit numerical result. This field is extensively covered by Peyret & Taylor [64J and Thomasset [82].

Automated Solution of Differential Equations by the Finite Element Method

Automated Solution of Differential Equations by the Finite Element Method
Author :
Publisher : Springer Science & Business Media
Total Pages : 723
Release :
ISBN-10 : 9783642230998
ISBN-13 : 3642230997
Rating : 4/5 (98 Downloads)

Book Synopsis Automated Solution of Differential Equations by the Finite Element Method by : Anders Logg

Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.