Identification of Dynamic Systems

Identification of Dynamic Systems
Author :
Publisher : Springer
Total Pages : 705
Release :
ISBN-10 : 3540871551
ISBN-13 : 9783540871552
Rating : 4/5 (51 Downloads)

Book Synopsis Identification of Dynamic Systems by : Rolf Isermann

Download or read book Identification of Dynamic Systems written by Rolf Isermann and published by Springer. This book was released on 2011-04-08 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

Identification of Dynamic Systems

Identification of Dynamic Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 705
Release :
ISBN-10 : 9783540788799
ISBN-13 : 3540788794
Rating : 4/5 (99 Downloads)

Book Synopsis Identification of Dynamic Systems by : Rolf Isermann

Download or read book Identification of Dynamic Systems written by Rolf Isermann and published by Springer Science & Business Media. This book was released on 2010-11-22 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

Modeling, Identification and Simulation of Dynamical Systems

Modeling, Identification and Simulation of Dynamical Systems
Author :
Publisher : CRC Press
Total Pages : 212
Release :
ISBN-10 : 9780429605925
ISBN-13 : 0429605927
Rating : 4/5 (25 Downloads)

Book Synopsis Modeling, Identification and Simulation of Dynamical Systems by : P. P. J. van den Bosch

Download or read book Modeling, Identification and Simulation of Dynamical Systems written by P. P. J. van den Bosch and published by CRC Press. This book was released on 2020-12-17 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an in-depth introduction to the areas of modeling, identification, simulation, and optimization. These scientific topics play an increasingly dominant part in many engineering areas such as electrotechnology, mechanical engineering, aerospace, and physics. This book represents a unique and concise treatment of the mutual interactions among these topics. Techniques for solving general nonlinear optimization problems as they arise in identification and many synthesis and design methods are detailed. The main points in deriving mathematical models via prior knowledge concerning the physics describing a system are emphasized. Several chapters discuss the identification of black-box models. Simulation is introduced as a numerical tool for calculating time responses of almost any mathematical model. The last chapter covers optimization, a generally applicable tool for formulating and solving many engineering problems.

Modeling & Identification of Dynamic Systems

Modeling & Identification of Dynamic Systems
Author :
Publisher :
Total Pages : 402
Release :
ISBN-10 : 9144116888
ISBN-13 : 9789144116884
Rating : 4/5 (88 Downloads)

Book Synopsis Modeling & Identification of Dynamic Systems by : Lennart Ljung

Download or read book Modeling & Identification of Dynamic Systems written by Lennart Ljung and published by . This book was released on 2016 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt:

System Identification

System Identification
Author :
Publisher : Springer Science & Business Media
Total Pages : 334
Release :
ISBN-10 : 9780857295224
ISBN-13 : 0857295225
Rating : 4/5 (24 Downloads)

Book Synopsis System Identification by : Karel J. Keesman

Download or read book System Identification written by Karel J. Keesman and published by Springer Science & Business Media. This book was released on 2011-05-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Author :
Publisher : Cambridge University Press
Total Pages : 615
Release :
ISBN-10 : 9781009098489
ISBN-13 : 1009098489
Rating : 4/5 (89 Downloads)

Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques

Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques
Author :
Publisher : Springer Science & Business Media
Total Pages : 294
Release :
ISBN-10 : 9781447138297
ISBN-13 : 1447138295
Rating : 4/5 (97 Downloads)

Book Synopsis Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques by : Silvio Simani

Download or read book Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques written by Silvio Simani and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Safety in industrial process and production plants is a concern of rising importance but because the control devices which are now exploited to improve the performance of industrial processes include both sophisticated digital system design techniques and complex hardware, there is a higher probability of failure. Control systems must include automatic supervision of closed-loop operation to detect and isolate malfunctions quickly. A promising method for solving this problem is "analytical redundancy", in which residual signals are obtained and an accurate model of the system mimics real process behaviour. If a fault occurs, the residual signal is used to diagnose and isolate the malfunction. This book focuses on model identification oriented to the analytical approach of fault diagnosis and identification covering: choice of model structure; parameter identification; residual generation; and fault diagnosis and isolation. Sample case studies are used to demonstrate the application of these techniques.