Homotopical Topology

Homotopical Topology
Author :
Publisher : Springer
Total Pages : 635
Release :
ISBN-10 : 9783319234885
ISBN-13 : 3319234889
Rating : 4/5 (85 Downloads)

Book Synopsis Homotopical Topology by : Anatoly Fomenko

Download or read book Homotopical Topology written by Anatoly Fomenko and published by Springer. This book was released on 2016-06-24 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on algebraic topology updates a popular textbook from the golden era of the Moscow school of I. M. Gelfand. The first English translation, done many decades ago, remains very much in demand, although it has been long out-of-print and is difficult to obtain. Therefore, this updated English edition will be much welcomed by the mathematical community. Distinctive features of this book include: a concise but fully rigorous presentation, supplemented by a plethora of illustrations of a high technical and artistic caliber; a huge number of nontrivial examples and computations done in detail; a deeper and broader treatment of topics in comparison to most beginning books on algebraic topology; an extensive, and very concrete, treatment of the machinery of spectral sequences. The second edition contains an entirely new chapter on K-theory and the Riemann-Roch theorem (after Hirzebruch and Grothendieck).

Algebraic Topology from a Homotopical Viewpoint

Algebraic Topology from a Homotopical Viewpoint
Author :
Publisher : Springer Science & Business Media
Total Pages : 499
Release :
ISBN-10 : 9780387224893
ISBN-13 : 0387224890
Rating : 4/5 (93 Downloads)

Book Synopsis Algebraic Topology from a Homotopical Viewpoint by : Marcelo Aguilar

Download or read book Algebraic Topology from a Homotopical Viewpoint written by Marcelo Aguilar and published by Springer Science & Business Media. This book was released on 2008-02-02 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors present introductory material in algebraic topology from a novel point of view in using a homotopy-theoretic approach. This carefully written book can be read by any student who knows some topology, providing a useful method to quickly learn this novel homotopy-theoretic point of view of algebraic topology.

Homotopic Topology

Homotopic Topology
Author :
Publisher :
Total Pages : 310
Release :
ISBN-10 : 0569089980
ISBN-13 : 9780569089982
Rating : 4/5 (80 Downloads)

Book Synopsis Homotopic Topology by : Anatolij T. Fomenko

Download or read book Homotopic Topology written by Anatolij T. Fomenko and published by . This book was released on 1986 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Homotopy Type Theory: Univalent Foundations of Mathematics

Homotopy Type Theory: Univalent Foundations of Mathematics
Author :
Publisher : Univalent Foundations
Total Pages : 484
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Homotopy Type Theory: Univalent Foundations of Mathematics by :

Download or read book Homotopy Type Theory: Univalent Foundations of Mathematics written by and published by Univalent Foundations. This book was released on with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Homotopy Theory

Introduction to Homotopy Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 352
Release :
ISBN-10 : 9781441973290
ISBN-13 : 144197329X
Rating : 4/5 (90 Downloads)

Book Synopsis Introduction to Homotopy Theory by : Martin Arkowitz

Download or read book Introduction to Homotopy Theory written by Martin Arkowitz and published by Springer Science & Business Media. This book was released on 2011-07-25 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Modern Classical Homotopy Theory

Modern Classical Homotopy Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 862
Release :
ISBN-10 : 9780821852866
ISBN-13 : 0821852868
Rating : 4/5 (66 Downloads)

Book Synopsis Modern Classical Homotopy Theory by : Jeffrey Strom

Download or read book Modern Classical Homotopy Theory written by Jeffrey Strom and published by American Mathematical Soc.. This book was released on 2011-10-19 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Categorical Homotopy Theory

Categorical Homotopy Theory
Author :
Publisher : Cambridge University Press
Total Pages : 371
Release :
ISBN-10 : 9781139952637
ISBN-13 : 1139952633
Rating : 4/5 (37 Downloads)

Book Synopsis Categorical Homotopy Theory by : Emily Riehl

Download or read book Categorical Homotopy Theory written by Emily Riehl and published by Cambridge University Press. This book was released on 2014-05-26 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.