Algebraic Geometry II: Cohomology of Schemes

Algebraic Geometry II: Cohomology of Schemes
Author :
Publisher : Springer Nature
Total Pages : 877
Release :
ISBN-10 : 9783658430313
ISBN-13 : 3658430311
Rating : 4/5 (13 Downloads)

Book Synopsis Algebraic Geometry II: Cohomology of Schemes by : Ulrich Görtz

Download or read book Algebraic Geometry II: Cohomology of Schemes written by Ulrich Görtz and published by Springer Nature. This book was released on 2023-11-22 with total page 877 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book completes the comprehensive introduction to modern algebraic geometry which was started with the introductory volume Algebraic Geometry I: Schemes. It begins by discussing in detail the notions of smooth, unramified and étale morphisms including the étale fundamental group. The main part is dedicated to the cohomology of quasi-coherent sheaves. The treatment is based on the formalism of derived categories which allows an efficient and conceptual treatment of the theory, which is of crucial importance in all areas of algebraic geometry. After the foundations are set up, several more advanced topics are studied, such as numerical intersection theory, an abstract version of the Theorem of Grothendieck-Riemann-Roch, the Theorem on Formal Functions, Grothendieck's algebraization results and a very general version of Grothendieck duality. The book concludes with chapters on curves and on abelian schemes, which serve to develop the basics of the theory of these two important classes of schemes on an advanced level, and at the same time to illustrate the power of the techniques introduced previously. The text contains many exercises that allow the reader to check their comprehension of the text, present further examples or give an outlook on further results.

Homological Algebra (PMS-19), Volume 19

Homological Algebra (PMS-19), Volume 19
Author :
Publisher : Princeton University Press
Total Pages : 408
Release :
ISBN-10 : 9781400883844
ISBN-13 : 1400883849
Rating : 4/5 (44 Downloads)

Book Synopsis Homological Algebra (PMS-19), Volume 19 by : Henry Cartan

Download or read book Homological Algebra (PMS-19), Volume 19 written by Henry Cartan and published by Princeton University Press. This book was released on 2016-06-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: When this book was written, methods of algebraic topology had caused revolutions in the world of pure algebra. To clarify the advances that had been made, Cartan and Eilenberg tried to unify the fields and to construct the framework of a fully fledged theory. The invasion of algebra had occurred on three fronts through the construction of cohomology theories for groups, Lie algebras, and associative algebras. This book presents a single homology (and also cohomology) theory that embodies all three; a large number of results is thus established in a general framework. Subsequently, each of the three theories is singled out by a suitable specialization, and its specific properties are studied. The starting point is the notion of a module over a ring. The primary operations are the tensor product of two modules and the groups of all homomorphisms of one module into another. From these, "higher order" derived of operations are obtained, which enjoy all the properties usually attributed to homology theories. This leads in a natural way to the study of "functors" and of their "derived functors." This mathematical masterpiece will appeal to all mathematicians working in algebraic topology.

Etale Cohomology (PMS-33)

Etale Cohomology (PMS-33)
Author :
Publisher : Princeton University Press
Total Pages : 346
Release :
ISBN-10 : 0691082383
ISBN-13 : 9780691082387
Rating : 4/5 (83 Downloads)

Book Synopsis Etale Cohomology (PMS-33) by : J. S. Milne

Download or read book Etale Cohomology (PMS-33) written by J. S. Milne and published by Princeton University Press. This book was released on 1980-04-21 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most important mathematical achievements of the past several decades has been A. Grothendieck's work on algebraic geometry. In the early 1960s, he and M. Artin introduced étale cohomology in order to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry, but also in several different branches of number theory and in the representation theory of finite and p-adic groups. Yet until now, the work has been available only in the original massive and difficult papers. In order to provide an accessible introduction to étale cohomology, J. S. Milne offers this more elementary account covering the essential features of the theory. The author begins with a review of the basic properties of flat and étale morphisms and of the algebraic fundamental group. The next two chapters concern the basic theory of étale sheaves and elementary étale cohomology, and are followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Professor Milne proves the fundamental theorems in étale cohomology -- those of base change, purity, Poincaré duality, and the Lefschetz trace formula. He then applies these theorems to show the rationality of some very general L-series. Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Commutative Algebra

Commutative Algebra
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 428
Release :
ISBN-10 : 9783110617078
ISBN-13 : 3110617072
Rating : 4/5 (78 Downloads)

Book Synopsis Commutative Algebra by : Aron Simis

Download or read book Commutative Algebra written by Aron Simis and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-03-09 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book on commutative algebra is divided into two parts in order to facilitate its use in several types of courses. The first introductory part covers the basic theory, connections with algebraic geometry, computational aspects, and extensions to module theory. The more advanced second part covers material such as associated primes and primary decomposition, local rings, M-sequences and Cohen-Macaulay modules, and homological methods.

Period Mappings with Applications to Symplectic Complex Spaces

Period Mappings with Applications to Symplectic Complex Spaces
Author :
Publisher : Springer
Total Pages : 295
Release :
ISBN-10 : 9783319175218
ISBN-13 : 3319175211
Rating : 4/5 (18 Downloads)

Book Synopsis Period Mappings with Applications to Symplectic Complex Spaces by : Tim Kirschner

Download or read book Period Mappings with Applications to Symplectic Complex Spaces written by Tim Kirschner and published by Springer. This book was released on 2015-09-15 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extending Griffiths’ classical theory of period mappings for compact Kähler manifolds, this book develops and applies a theory of period mappings of “Hodge-de Rham type” for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Frölicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkähler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely.

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48)

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48)
Author :
Publisher : Princeton University Press
Total Pages : 708
Release :
ISBN-10 : 0691137773
ISBN-13 : 9780691137773
Rating : 4/5 (73 Downloads)

Book Synopsis Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) by : Kari Astala

Download or read book Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) written by Kari Astala and published by Princeton University Press. This book was released on 2009-01-18 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.

Homological Algebra

Homological Algebra
Author :
Publisher : Andesite Press
Total Pages : 418
Release :
ISBN-10 : 1297511689
ISBN-13 : 9781297511684
Rating : 4/5 (89 Downloads)

Book Synopsis Homological Algebra by : Henri Cartan

Download or read book Homological Algebra written by Henri Cartan and published by Andesite Press. This book was released on 2015-08-08 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.