Hiroakira Ono on Substructural Logics

Hiroakira Ono on Substructural Logics
Author :
Publisher : Springer Nature
Total Pages : 382
Release :
ISBN-10 : 9783030769208
ISBN-13 : 3030769208
Rating : 4/5 (08 Downloads)

Book Synopsis Hiroakira Ono on Substructural Logics by : Nikolaos Galatos

Download or read book Hiroakira Ono on Substructural Logics written by Nikolaos Galatos and published by Springer Nature. This book was released on 2021-12-13 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to Hiroakira Ono life’s work on substructural logics. Chapters, written by well-established academics, cover topics related to universal algebra, algebraic logic and the Full Lambek calculus; the book includes a short biography about Hiroakira Ono. The book starts with detailed surveys on universal algebra, abstract algebraic logic, topological dualities, and connections to computer science. It further contains specialised contributions on connections to formal languages (recognizability in residuated lattices and connections to the finite embedding property), covering systems for modal substructural logics, results on the existence and disjunction properties and finally a study of conservativity of expansions. This book will be primarily of interest to researchers working in algebraic and non-classical logic.

Residuated Lattices: An Algebraic Glimpse at Substructural Logics

Residuated Lattices: An Algebraic Glimpse at Substructural Logics
Author :
Publisher : Elsevier
Total Pages : 532
Release :
ISBN-10 : 9780080489643
ISBN-13 : 0080489648
Rating : 4/5 (43 Downloads)

Book Synopsis Residuated Lattices: An Algebraic Glimpse at Substructural Logics by : Nikolaos Galatos

Download or read book Residuated Lattices: An Algebraic Glimpse at Substructural Logics written by Nikolaos Galatos and published by Elsevier. This book was released on 2007-04-25 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions. Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples. We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric.

Proof Theory and Algebra in Logic

Proof Theory and Algebra in Logic
Author :
Publisher : Springer
Total Pages : 164
Release :
ISBN-10 : 9789811379970
ISBN-13 : 9811379971
Rating : 4/5 (70 Downloads)

Book Synopsis Proof Theory and Algebra in Logic by : Hiroakira Ono

Download or read book Proof Theory and Algebra in Logic written by Hiroakira Ono and published by Springer. This book was released on 2019-08-02 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise introduction to both proof-theory and algebraic methods, the core of the syntactic and semantic study of logic respectively. The importance of combining these two has been increasingly recognized in recent years. It highlights the contrasts between the deep, concrete results using the former and the general, abstract ones using the latter. Covering modal logics, many-valued logics, superintuitionistic and substructural logics, together with their algebraic semantics, the book also provides an introduction to nonclassical logic for undergraduate or graduate level courses.The book is divided into two parts: Proof Theory in Part I and Algebra in Logic in Part II. Part I presents sequent systems and discusses cut elimination and its applications in detail. It also provides simplified proof of cut elimination, making the topic more accessible. The last chapter of Part I is devoted to clarification of the classes of logics that are discussed in the second part. Part II focuses on algebraic semantics for these logics. At the same time, it is a gentle introduction to the basics of algebraic logic and universal algebra with many examples of their applications in logic. Part II can be read independently of Part I, with only minimum knowledge required, and as such is suitable as a textbook for short introductory courses on algebra in logic.

Mathematics, Logic, and their Philosophies

Mathematics, Logic, and their Philosophies
Author :
Publisher : Springer Nature
Total Pages : 493
Release :
ISBN-10 : 9783030536541
ISBN-13 : 3030536548
Rating : 4/5 (41 Downloads)

Book Synopsis Mathematics, Logic, and their Philosophies by : Mojtaba Mojtahedi

Download or read book Mathematics, Logic, and their Philosophies written by Mojtaba Mojtahedi and published by Springer Nature. This book was released on 2021-02-09 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of essays in honour of Professor Mohammad Ardeshir. It examines topics which, in one way or another, are connected to the various aspects of his multidisciplinary research interests. Based on this criterion, the book is divided into three general categories. The first category includes papers on non-classical logics, including intuitionistic logic, constructive logic, basic logic, and substructural logic. The second category is made up of papers discussing issues in the contemporary philosophy of mathematics and logic. The third category contains papers on Avicenna’s logic and philosophy. Mohammad Ardeshir is a full professor of mathematical logic at the Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, where he has taught generations of students for around a quarter century. Mohammad Ardeshir is known in the first place for his prominent works in basic logic and constructive mathematics. His areas of interest are however much broader and include topics in intuitionistic philosophy of mathematics and Arabic philosophy of logic and mathematics. In addition to numerous research articles in leading international journals, Ardeshir is the author of a highly praised Persian textbook in mathematical logic. Partly through his writings and translations, the school of mathematical intuitionism was introduced to the Iranian academic community.

Knowledge, Proof and Dynamics

Knowledge, Proof and Dynamics
Author :
Publisher : Springer
Total Pages : 217
Release :
ISBN-10 : 9811522200
ISBN-13 : 9789811522208
Rating : 4/5 (00 Downloads)

Book Synopsis Knowledge, Proof and Dynamics by : Fenrong Liu

Download or read book Knowledge, Proof and Dynamics written by Fenrong Liu and published by Springer. This book was released on 2020-03-24 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers selected papers presented at the Fourth Asian Workshop on Philosophical Logic, held in Beijing in October 2018. The contributions cover a wide variety of topics in modal logic (epistemic logic, temporal logic and dynamic logic), proof theory, algebraic logic, game logics, and philosophical foundations of logic. They also reflect the interdisciplinary nature of logic – a subject that has been studied in fields as diverse as philosophy, linguistics, mathematics, computer science and artificial intelligence. More specifically. The book also presents the latest developments in logic both in Asia and beyond.

Quantifiers, Propositions and Identity

Quantifiers, Propositions and Identity
Author :
Publisher : Cambridge University Press
Total Pages : 283
Release :
ISBN-10 : 9781107010529
ISBN-13 : 1107010527
Rating : 4/5 (29 Downloads)

Book Synopsis Quantifiers, Propositions and Identity by : Robert Goldblatt

Download or read book Quantifiers, Propositions and Identity written by Robert Goldblatt and published by Cambridge University Press. This book was released on 2011-07-14 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops new semantical characterisations of many logical systems with quantification that are incomplete under the traditional Kripkean possible worlds interpretation. This book is for mathematical or philosophical logicians, computer scientists and linguists, including academic researchers, teachers and advanced students.

Trends in Logic

Trends in Logic
Author :
Publisher : Springer Science & Business Media
Total Pages : 387
Release :
ISBN-10 : 9789401735988
ISBN-13 : 9401735980
Rating : 4/5 (88 Downloads)

Book Synopsis Trends in Logic by : Vincent F. Hendricks

Download or read book Trends in Logic written by Vincent F. Hendricks and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1953, exactly 50 years ago to this day, the first volume of Studia Logica appeared under the auspices of The Philosophical Committee of The Polish Academy of Sciences. Now, five decades later the present volume is dedicated to a celebration of this 50th Anniversary of Studia Logica. The volume features a series of papers by distinguished scholars reflecting both the aim and scope of this journal for symbolic logic.