Heights in Diophantine Geometry

Heights in Diophantine Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 676
Release :
ISBN-10 : 0521712297
ISBN-13 : 9780521712293
Rating : 4/5 (97 Downloads)

Book Synopsis Heights in Diophantine Geometry by : Enrico Bombieri

Download or read book Heights in Diophantine Geometry written by Enrico Bombieri and published by Cambridge University Press. This book was released on 2006 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a bridge between the classical theory and modern approach via arithmetic geometry.

Diophantine Geometry

Diophantine Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 574
Release :
ISBN-10 : 9781461212102
ISBN-13 : 1461212103
Rating : 4/5 (02 Downloads)

Book Synopsis Diophantine Geometry by : Marc Hindry

Download or read book Diophantine Geometry written by Marc Hindry and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

Fundamentals of Diophantine Geometry

Fundamentals of Diophantine Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 383
Release :
ISBN-10 : 9781475718102
ISBN-13 : 1475718101
Rating : 4/5 (02 Downloads)

Book Synopsis Fundamentals of Diophantine Geometry by : S. Lang

Download or read book Fundamentals of Diophantine Geometry written by S. Lang and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.

The Mordell Conjecture

The Mordell Conjecture
Author :
Publisher : Cambridge University Press
Total Pages : 179
Release :
ISBN-10 : 9781108845953
ISBN-13 : 1108845959
Rating : 4/5 (53 Downloads)

Book Synopsis The Mordell Conjecture by : Hideaki Ikoma

Download or read book The Mordell Conjecture written by Hideaki Ikoma and published by Cambridge University Press. This book was released on 2022-02-03 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained proof of the Mordell conjecture (Faltings's theorem) and a concise introduction to Diophantine geometry.

Arakelov Geometry and Diophantine Applications

Arakelov Geometry and Diophantine Applications
Author :
Publisher : Springer Nature
Total Pages : 469
Release :
ISBN-10 : 9783030575595
ISBN-13 : 3030575594
Rating : 4/5 (95 Downloads)

Book Synopsis Arakelov Geometry and Diophantine Applications by : Emmanuel Peyre

Download or read book Arakelov Geometry and Diophantine Applications written by Emmanuel Peyre and published by Springer Nature. This book was released on 2021-03-10 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.

Logarithmic Forms and Diophantine Geometry

Logarithmic Forms and Diophantine Geometry
Author :
Publisher : Cambridge University Press
Total Pages :
Release :
ISBN-10 : 9781139468879
ISBN-13 : 1139468871
Rating : 4/5 (79 Downloads)

Book Synopsis Logarithmic Forms and Diophantine Geometry by : A. Baker

Download or read book Logarithmic Forms and Diophantine Geometry written by A. Baker and published by Cambridge University Press. This book was released on 2008-01-17 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: There is now much interplay between studies on logarithmic forms and deep aspects of arithmetic algebraic geometry. New light has been shed, for instance, on the famous conjectures of Tate and Shafarevich relating to abelian varieties and the associated celebrated discoveries of Faltings establishing the Mordell conjecture. This book gives an account of the theory of linear forms in the logarithms of algebraic numbers with special emphasis on the important developments of the past twenty-five years. The first part covers basic material in transcendental number theory but with a modern perspective. The remainder assumes some background in Lie algebras and group varieties, and covers, in some instances for the first time in book form, several advanced topics. The final chapter summarises other aspects of Diophantine geometry including hypergeometric theory and the André-Oort conjecture. A comprehensive bibliography rounds off this definitive survey of effective methods in Diophantine geometry.

Elliptic Diophantine Equations

Elliptic Diophantine Equations
Author :
Publisher : Walter de Gruyter
Total Pages : 196
Release :
ISBN-10 : 9783110281149
ISBN-13 : 3110281147
Rating : 4/5 (49 Downloads)

Book Synopsis Elliptic Diophantine Equations by : Nikos Tzanakis

Download or read book Elliptic Diophantine Equations written by Nikos Tzanakis and published by Walter de Gruyter. This book was released on 2013-08-29 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents in a unified and concrete way the beautiful and deep mathematics - both theoretical and computational - on which the explicit solution of an elliptic Diophantine equation is based. It collects numerous results and methods that are scattered in the literature. Some results are hidden behind a number of routines in software packages, like Magma and Maple; professional mathematicians very often use these routines just as a black-box, having little idea about the mathematical treasure behind them. Almost 20 years have passed since the first publications on the explicit solution of elliptic Diophantine equations with the use of elliptic logarithms. The "art" of solving this type of equation has now reached its full maturity. The author is one of the main persons that contributed to the development of this art. The monograph presents a well-balanced combination of a variety of theoretical tools (from Diophantine geometry, algebraic number theory, theory of linear forms in logarithms of various forms - real/complex and p-adic elliptic - and classical complex analysis), clever computational methods and techniques (LLL algorithm and de Weger's reduction technique, AGM algorithm, Zagier's technique for computing elliptic integrals), ready-to-use computer packages. A result is the solution in practice of a large general class of Diophantine equations.