Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane

Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane
Author :
Publisher : Springer Science & Business Media
Total Pages : 430
Release :
ISBN-10 : 9781461479727
ISBN-13 : 146147972X
Rating : 4/5 (27 Downloads)

Book Synopsis Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane by : Audrey Terras

Download or read book Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane written by Audrey Terras and published by Springer Science & Business Media. This book was released on 2013-09-12 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.

Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations

Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations
Author :
Publisher : Springer
Total Pages : 500
Release :
ISBN-10 : 9781493934089
ISBN-13 : 1493934082
Rating : 4/5 (89 Downloads)

Book Synopsis Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations by : Audrey Terras

Download or read book Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations written by Audrey Terras and published by Springer. This book was released on 2016-04-26 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices. Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups Γ (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant ±1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.

Harmonic Analysis for Engineers and Applied Scientists

Harmonic Analysis for Engineers and Applied Scientists
Author :
Publisher : Courier Dover Publications
Total Pages : 881
Release :
ISBN-10 : 9780486795645
ISBN-13 : 0486795640
Rating : 4/5 (45 Downloads)

Book Synopsis Harmonic Analysis for Engineers and Applied Scientists by : Gregory S. Chirikjian

Download or read book Harmonic Analysis for Engineers and Applied Scientists written by Gregory S. Chirikjian and published by Courier Dover Publications. This book was released on 2016-07-20 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the Fourier transform is among engineering's most widely used mathematical tools, few engineers realize that the extension of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. This self-contained approach, geared toward readers with a standard background in engineering mathematics, explores the widest possible range of applications to fields such as robotics, mechanics, tomography, sensor calibration, estimation and control, liquid crystal analysis, and conformational statistics of macromolecules. Harmonic analysis is explored in terms of particular Lie groups, and the text deals with only a limited number of proofs, focusing instead on specific applications and fundamental mathematical results. Forming a bridge between pure mathematics and the challenges of modern engineering, this updated and expanded volume offers a concrete, accessible treatment that places the general theory in the context of specific groups.

Fourier Series, Fourier Transforms, and Function Spaces

Fourier Series, Fourier Transforms, and Function Spaces
Author :
Publisher : American Mathematical Society
Total Pages : 370
Release :
ISBN-10 : 9781470476007
ISBN-13 : 1470476002
Rating : 4/5 (07 Downloads)

Book Synopsis Fourier Series, Fourier Transforms, and Function Spaces by : Tim Hsu

Download or read book Fourier Series, Fourier Transforms, and Function Spaces written by Tim Hsu and published by American Mathematical Society. This book was released on 2023-12-07 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier Series, Fourier Transforms, and Function Spaces is designed as a textbook for a second course or capstone course in analysis for advanced undergraduate or beginning graduate students. By assuming the existence and properties of the Lebesgue integral, this book makes it possible for students who have previously taken only one course in real analysis to learn Fourier analysis in terms of Hilbert spaces, allowing for both a deeper and more elegant approach. This approach also allows junior and senior undergraduates to study topics like PDEs, quantum mechanics, and signal processing in a rigorous manner. Students interested in statistics (time series), machine learning (kernel methods), mathematical physics (quantum mechanics), or electrical engineering (signal processing) will find this book useful. With 400 problems, many of which guide readers in developing key theoretical concepts themselves, this text can also be adapted to self-study or an inquiry-based approach. Finally, of course, this text can also serve as motivation and preparation for students going on to further study in analysis.

Real and Functional Analysis

Real and Functional Analysis
Author :
Publisher : Springer Nature
Total Pages : 586
Release :
ISBN-10 : 9783030382193
ISBN-13 : 3030382192
Rating : 4/5 (93 Downloads)

Book Synopsis Real and Functional Analysis by : Vladimir I. Bogachev

Download or read book Real and Functional Analysis written by Vladimir I. Bogachev and published by Springer Nature. This book was released on 2020-02-25 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.

Handbook of Complex Analysis

Handbook of Complex Analysis
Author :
Publisher : CRC Press
Total Pages : 547
Release :
ISBN-10 : 9781351663069
ISBN-13 : 1351663062
Rating : 4/5 (69 Downloads)

Book Synopsis Handbook of Complex Analysis by : Steven G. Krantz

Download or read book Handbook of Complex Analysis written by Steven G. Krantz and published by CRC Press. This book was released on 2022-03-07 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: In spite of being nearly 500 years old, the subject of complex analysis is still today a vital and active part of mathematics. There are important applications in physics, engineering, and other aspects of technology. This Handbook presents contributed chapters by prominent mathematicians, including the new generation of researchers. More than a compilation of recent results, this book offers students an essential stepping-stone to gain an entry into the research life of complex analysis. Classes and seminars play a role in this process. More, though, is needed for further study. This Handbook will play that role. This book is also a reference and a source of inspiration for more seasoned mathematicians—both specialists in complex analysis and others who want to acquaint themselves with current modes of thought. The chapters in this volume are authored by leading experts and gifted expositors. They are carefully crafted presentations of diverse aspects of the field, formulated for a broad and diverse audience. This volume is a touchstone for current ideas in the broadly construed subject area of complex analysis. It should enrich the literature and point in some new directions.

Harmonic Analysis on Symmetric Spaces and Applications I

Harmonic Analysis on Symmetric Spaces and Applications I
Author :
Publisher : Springer Science & Business Media
Total Pages : 353
Release :
ISBN-10 : 9781461251286
ISBN-13 : 1461251281
Rating : 4/5 (86 Downloads)

Book Synopsis Harmonic Analysis on Symmetric Spaces and Applications I by : Audrey Terras

Download or read book Harmonic Analysis on Symmetric Spaces and Applications I written by Audrey Terras and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its beginnings with Fourier (and as far back as the Babylonian astron omers), harmonic analysis has been developed with the goal of unraveling the mysteries of the physical world of quasars, brain tumors, and so forth, as well as the mysteries of the nonphysical, but no less concrete, world of prime numbers, diophantine equations, and zeta functions. Quoting Courant and Hilbert, in the preface to the first German edition of Methods of Mathematical Physics: "Recent trends and fashions have, however, weakened the connection between mathematics and physics. " Such trends are still in evidence, harmful though they may be. My main motivation in writing these notes has been a desire to counteract this tendency towards specialization and describe appli cations of harmonic analysis in such diverse areas as number theory (which happens to be my specialty), statistics, medicine, geophysics, and quantum physics. I remember being quite surprised to learn that the subject is useful. My graduate eduation was that of the 1960s. The standard mathematics graduate course proceeded from Definition 1. 1. 1 to Corollary 14. 5. 59, with no room in between for applications, motivation, history, or references to related work. My aim has been to write a set of notes for a very different sort of course.