Graphics of Large Datasets

Graphics of Large Datasets
Author :
Publisher : Springer Science & Business Media
Total Pages : 276
Release :
ISBN-10 : 9780387379777
ISBN-13 : 0387379770
Rating : 4/5 (77 Downloads)

Book Synopsis Graphics of Large Datasets by : Antony Unwin

Download or read book Graphics of Large Datasets written by Antony Unwin and published by Springer Science & Business Media. This book was released on 2007-06-12 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how to look at ways of visualizing large datasets, whether large in numbers of cases, or large in numbers of variables, or large in both. All ideas are illustrated with displays from analyses of real datasets and the importance of interpreting displays effectively is emphasized. Graphics should be drawn to convey information and the book includes many insightful examples. New approaches to graphics are needed to visualize the information in large datasets and most of the innovations described in this book are developments of standard graphics. The book is accessible to readers with some experience of drawing statistical graphics.

Mining of Massive Datasets

Mining of Massive Datasets
Author :
Publisher : Cambridge University Press
Total Pages : 480
Release :
ISBN-10 : 9781107077232
ISBN-13 : 1107077230
Rating : 4/5 (32 Downloads)

Book Synopsis Mining of Massive Datasets by : Jure Leskovec

Download or read book Mining of Massive Datasets written by Jure Leskovec and published by Cambridge University Press. This book was released on 2014-11-13 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Mastering Large Datasets

Mastering Large Datasets
Author :
Publisher : Manning Publications
Total Pages : 350
Release :
ISBN-10 : 1617296236
ISBN-13 : 9781617296239
Rating : 4/5 (36 Downloads)

Book Synopsis Mastering Large Datasets by : J. T. Wolohan

Download or read book Mastering Large Datasets written by J. T. Wolohan and published by Manning Publications. This book was released on 2020-01-06 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: With an emphasis on clarity, style, and performance, author J.T. Wolohan expertly guides you through implementing a functionally-influenced approach to Python coding. You'll get familiar with Python's functional built-ins like the functools operator and itertools modules, as well as the toolz library. Mastering Large Datasets teaches you to write easily readable, easily scalable Python code that can efficiently process large volumes of structured and unstructured data. By the end of this comprehensive guide, you'll have a solid grasp on the tools and methods that will take your code beyond the laptop and your data science career to the next level! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Algorithms and Data Structures for Massive Datasets

Algorithms and Data Structures for Massive Datasets
Author :
Publisher : Simon and Schuster
Total Pages : 302
Release :
ISBN-10 : 9781638356561
ISBN-13 : 1638356564
Rating : 4/5 (61 Downloads)

Book Synopsis Algorithms and Data Structures for Massive Datasets by : Dzejla Medjedovic

Download or read book Algorithms and Data Structures for Massive Datasets written by Dzejla Medjedovic and published by Simon and Schuster. This book was released on 2022-08-16 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting

Envisioning Information

Envisioning Information
Author :
Publisher :
Total Pages : 356
Release :
ISBN-10 : 0961392118
ISBN-13 : 9780961392116
Rating : 4/5 (18 Downloads)

Book Synopsis Envisioning Information by : Edward R. Tufte

Download or read book Envisioning Information written by Edward R. Tufte and published by . This book was released on 1990 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Escaping flatland -- Micro/macro readings -- Layering and separation -- Small multiples -- Color and information -- Narratives and space and time -- Epilogue.

Introduction to Data Science

Introduction to Data Science
Author :
Publisher : CRC Press
Total Pages : 836
Release :
ISBN-10 : 9781000708035
ISBN-13 : 1000708039
Rating : 4/5 (35 Downloads)

Book Synopsis Introduction to Data Science by : Rafael A. Irizarry

Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.

R for Data Science

R for Data Science
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 521
Release :
ISBN-10 : 9781491910368
ISBN-13 : 1491910364
Rating : 4/5 (68 Downloads)

Book Synopsis R for Data Science by : Hadley Wickham

Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results