GOOGLE CLOUD PLATFORM FOR ENTERPRISE MLOPS:A PRACTICAL GUIDE TO CLOUD COMPUTING: PART ONE

GOOGLE CLOUD PLATFORM FOR ENTERPRISE MLOPS:A PRACTICAL GUIDE TO CLOUD COMPUTING: PART ONE
Author :
Publisher : Jothi Periasamy
Total Pages : 305
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis GOOGLE CLOUD PLATFORM FOR ENTERPRISE MLOPS:A PRACTICAL GUIDE TO CLOUD COMPUTING: PART ONE by : Jothi Periasamy

Download or read book GOOGLE CLOUD PLATFORM FOR ENTERPRISE MLOPS:A PRACTICAL GUIDE TO CLOUD COMPUTING: PART ONE written by Jothi Periasamy and published by Jothi Periasamy. This book was released on 2022-12-12 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Data Engineering with Google Cloud Platform

Data Engineering with Google Cloud Platform
Author :
Publisher : Packt Publishing Ltd
Total Pages : 440
Release :
ISBN-10 : 9781800565067
ISBN-13 : 1800565062
Rating : 4/5 (67 Downloads)

Book Synopsis Data Engineering with Google Cloud Platform by : Adi Wijaya

Download or read book Data Engineering with Google Cloud Platform written by Adi Wijaya and published by Packt Publishing Ltd. This book was released on 2022-03-31 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.

Enterprise AI in the Cloud

Enterprise AI in the Cloud
Author :
Publisher : John Wiley & Sons
Total Pages : 763
Release :
ISBN-10 : 9781394213061
ISBN-13 : 1394213069
Rating : 4/5 (61 Downloads)

Book Synopsis Enterprise AI in the Cloud by : Rabi Jay

Download or read book Enterprise AI in the Cloud written by Rabi Jay and published by John Wiley & Sons. This book was released on 2023-12-20 with total page 763 pages. Available in PDF, EPUB and Kindle. Book excerpt: Embrace emerging AI trends and integrate your operations with cutting-edge solutions Enterprise AI in the Cloud: A Practical Guide to Deploying End-to-End Machine Learning and ChatGPT Solutions is an indispensable resource for professionals and companies who want to bring new AI technologies like generative AI, ChatGPT, and machine learning (ML) into their suite of cloud-based solutions. If you want to set up AI platforms in the cloud quickly and confidently and drive your business forward with the power of AI, this book is the ultimate go-to guide. The author shows you how to start an enterprise-wide AI transformation effort, taking you all the way through to implementation, with clearly defined processes, numerous examples, and hands-on exercises. You’ll also discover best practices on optimizing cloud infrastructure for scalability and automation. Enterprise AI in the Cloud helps you gain a solid understanding of: AI-First Strategy: Adopt a comprehensive approach to implementing corporate AI systems in the cloud and at scale, using an AI-First strategy to drive innovation State-of-the-Art Use Cases: Learn from emerging AI/ML use cases, such as ChatGPT, VR/AR, blockchain, metaverse, hyper-automation, generative AI, transformer models, Keras, TensorFlow in the cloud, and quantum machine learning Platform Scalability and MLOps (ML Operations): Select the ideal cloud platform and adopt best practices on optimizing cloud infrastructure for scalability and automation AWS, Azure, Google ML: Understand the machine learning lifecycle, from framing problems to deploying models and beyond, leveraging the full power of Azure, AWS, and Google Cloud platforms AI-Driven Innovation Excellence: Get practical advice on identifying potential use cases, developing a winning AI strategy and portfolio, and driving an innovation culture Ethical and Trustworthy AI Mastery: Implement Responsible AI by avoiding common risks while maintaining transparency and ethics Scaling AI Enterprise-Wide: Scale your AI implementation using Strategic Change Management, AI Maturity Models, AI Center of Excellence, and AI Operating Model Whether you're a beginner or an experienced AI or MLOps engineer, business or technology leader, or an AI student or enthusiast, this comprehensive resource empowers you to confidently build and use AI models in production, bridging the gap between proof-of-concept projects and real-world AI deployments. With over 300 review questions, 50 hands-on exercises, templates, and hundreds of best practice tips to guide you through every step of the way, this book is a must-read for anyone seeking to accelerate AI transformation across their enterprise.

Google Cloud Digital Leader Certification Guide

Google Cloud Digital Leader Certification Guide
Author :
Publisher : Packt Publishing Ltd
Total Pages : 210
Release :
ISBN-10 : 9781805125907
ISBN-13 : 1805125907
Rating : 4/5 (07 Downloads)

Book Synopsis Google Cloud Digital Leader Certification Guide by : Bruno Beraldo Rodrigues

Download or read book Google Cloud Digital Leader Certification Guide written by Bruno Beraldo Rodrigues and published by Packt Publishing Ltd. This book was released on 2024-03-15 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain the expertise needed for the Google Cloud Digital Leader certification with the help of industry insights, effective testing strategies, and exam questions designed to help you make informed tech decisions aligned with business goals Key Features Learn about data management, AI, monetization, security, and the significance of infrastructure modernization Build a solid foundation in Google Cloud, covering all technical essentials necessary for a Google Cloud Digital Leader Test your knowledge of cloud and digital transformation through realistic exam questions Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionTo thrive in today's world, leaders and technologists must understand how technology shapes businesses. As organizations shift from self-hosted to cloud-native solutions, embracing serverless systems, strategizing data use, and defining monetization becomes imperative. The Google Cloud Digital Leader Certification Guide lays a solid foundation of industry knowledge, focused on the Google Cloud platform and the innovative ways in which customers leverage its technologies. The book starts by helping you grasp the essence of digital transformation within the Google Cloud context. You’ll then cover core components of the platform, such as infrastructure and application modernization, data innovation, and best practices for environment management and security. With a series of practice exam questions included, this book ensures that you build comprehensive knowledge and prepare to certify as a Google Cloud Digital Leader. Going beyond the exam essentials, you’ll also explore how companies are modernizing infrastructure, data ecosystems, and teams in order to capitalize on new market opportunities through platform expertise, best practices, and real-world scenarios. By the end of this book, you'll have learned everything you need to pass the Google Cloud Digital Leader certification exam and have a reference guide for future requirements.What you will learn Leverage Google Cloud’s AI and ML solutions to create business value Identify Google Cloud solutions for data management and smart analytics Acquire the skills necessary to modernize infrastructure and applications on GCP Understand the value of APIs and their applications in cloud environments Master financial governance and implement best practices for cost management Understand the cloud security approach and benefits of Google Cloud security Find out how IT operations must adapt to thrive in the cloud Who this book is for This Google Cloud fundamentals book is suitable for individuals with both technical and non-technical backgrounds looking for a starting point to pursue more advanced Google Cloud certifications. No prior experience is required to get started with this book; only a keen interest in learning and exploring cloud concepts, with a focus on Google Cloud.

Machine Learning at Scale with H2O

Machine Learning at Scale with H2O
Author :
Publisher : Packt Publishing Ltd
Total Pages : 396
Release :
ISBN-10 : 9781800569294
ISBN-13 : 1800569297
Rating : 4/5 (94 Downloads)

Book Synopsis Machine Learning at Scale with H2O by : Gregory Keys

Download or read book Machine Learning at Scale with H2O written by Gregory Keys and published by Packt Publishing Ltd. This book was released on 2022-07-29 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build predictive models using large data volumes and deploy them to production using cutting-edge techniques Key Features • Build highly accurate state-of-the-art machine learning models against large-scale data • Deploy models for batch, real-time, and streaming data in a wide variety of target production systems • Explore all the new features of the H2O AI Cloud end-to-end machine learning platform Book Description H2O is an open source, fast, and scalable machine learning framework that allows you to build models using big data and then easily productionalize them in diverse enterprise environments. Machine Learning at Scale with H2O begins with an overview of the challenges faced in building machine learning models on large enterprise systems, and then addresses how H2O helps you to overcome them. You'll start by exploring H2O's in-memory distributed architecture and find out how it enables you to build highly accurate and explainable models on massive datasets using your favorite ML algorithms, language, and IDE. You'll also get to grips with the seamless integration of H2O model building and deployment with Spark using H2O Sparkling Water. You'll then learn how to easily deploy models with H2O MOJO. Next, the book shows you how H2O Enterprise Steam handles admin configurations and user management, and then helps you to identify different stakeholder perspectives that a data scientist must understand in order to succeed in an enterprise setting. Finally, you'll be introduced to the H2O AI Cloud platform and explore the entire machine learning life cycle using multiple advanced AI capabilities. By the end of this book, you'll be able to build and deploy advanced, state-of-the-art machine learning models for your business needs. What you will learn • Build and deploy machine learning models using H2O • Explore advanced model-building techniques • Integrate Spark and H2O code using H2O Sparkling Water • Launch self-service model building environments • Deploy H2O models in a variety of target systems and scoring contexts • Expand your machine learning capabilities on the H2O AI Cloud Who this book is for This book is for data scientists and machine learning engineers who want to gain hands-on machine learning experience by building and deploying state-of-the-art models with advanced techniques using H2O technology. An understanding of the data science process and experience in Python programming is recommended. This book will also benefit students by helping them understand how machine learning works in real-world enterprise scenarios.

AI-Driven IoT Systems for Industry 4.0

AI-Driven IoT Systems for Industry 4.0
Author :
Publisher : CRC Press
Total Pages : 419
Release :
ISBN-10 : 9781040041154
ISBN-13 : 1040041159
Rating : 4/5 (54 Downloads)

Book Synopsis AI-Driven IoT Systems for Industry 4.0 by : Deepa Jose

Download or read book AI-Driven IoT Systems for Industry 4.0 written by Deepa Jose and published by CRC Press. This book was released on 2024-07-30 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to discuss the trends and key drivers of Internet of Things (IoT) and artificial intelligence (AI) for automation in Industry 4.0. IoT and AI are transforming the industry thus accelerating efficiency and forging a more reliable automated enterprise. AI-driven IoT systems for Industry 4.0 explore current research to be carried out in the cutting-edge areas of AI for advanced analytics, integration of industrial IoT (IIoT) solutions and Edge components, automation in cyber-physical systems, world leading Industry 4.0 frameworks and adaptive supply chains, etc. A thorough exploration of Industry 4.0 is provided, focusing on the challenges of digital transformation and automation. It covers digital connectivity, sensors, and the integration of intelligent thinking and data science. Emphasizing the significance of AI, the chapter delves into optimal decision-making in Industry 4.0. It extensively examines automation and hybrid edge computing architecture, highlighting their applications. The narrative then shifts to IIoT and edge AI, exploring their convergence and the use of edge AI for visual insights in smart factories. The book concludes by discussing the role of AI in constructing digital twins, speeding up product development lifecycles, and offering insights for decision-making in smart factories. Throughout, the emphasis remains on the transformative impact of deep learning and AI in automating and accelerating manufacturing processes within the context of Industry 4.0. This book is intended for undergraduates, postgraduates, academicians, researchers, and industry professionals in industrial and computer engineering.

Machine Learning in Production

Machine Learning in Production
Author :
Publisher : BPB Publications
Total Pages : 463
Release :
ISBN-10 : 9789355518101
ISBN-13 : 9355518102
Rating : 4/5 (01 Downloads)

Book Synopsis Machine Learning in Production by : Suhas Pote

Download or read book Machine Learning in Production written by Suhas Pote and published by BPB Publications. This book was released on 2023-04-29 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deploy, manage, and scale Machine Learning models with MLOps effortlessly KEY FEATURES ● Explore several ways to build and deploy ML models in production using an automated CI/CD pipeline. ● Develop and convert ML apps into Android and Windows apps. ● Learn how to implement ML model deployment on popular cloud platforms, including Azure, GCP, and AWS. DESCRIPTION ‘Machine Learning in Production’ is an attempt to decipher the path to a remarkable career in the field of MLOps. It is a comprehensive guide to managing the machine learning lifecycle from development to deployment, outlining ways in which you can deploy ML models in production. It starts off with fundamental concepts, an introduction to the ML lifecycle and MLOps, followed by comprehensive step-by-step instructions on how to develop a package for ML code from scratch that can be installed using pip. It then covers MLflow for ML life cycle management, CI/CD pipelines, and shows how to deploy ML applications on Azure, GCP, and AWS. Furthermore, it provides guidance on how to convert Python applications into Android and Windows apps, as well as how to develop ML web apps. Finally, it covers monitoring, the critical topic of machine learning attacks, and A/B testing. With this book, you can easily build and deploy machine learning solutions in production. WHAT YOU WILL LEARN ● Master the Machine Learning lifecycle with MLOps. ● Learn best practices for managing ML models at scale. ● Streamline your ML workflow with MLFlow. ● Implement monitoring solutions using whylogs, WhyLabs, Grafana, and Prometheus. ● Use Docker and Kubernetes for ML deployment. WHO THIS BOOK IS FOR Whether you are a Data scientist, ML engineer, DevOps professional, Software engineer, or Cloud architect, this book will help you get your machine learning models into production quickly and efficiently. TABLE OF CONTENTS 1. Python 101 2. Git and GitHub Fundamentals 3. Challenges in ML Model Deployment 4. Packaging ML Models 5. MLflow-Platform to Manage the ML Life Cycle 6. Docker for ML 7. Build ML Web Apps Using API 8. Build Native ML Apps 9. CI/CD for ML 10. Deploying ML Models on Heroku 11. Deploying ML Models on Microsoft Azure 12. Deploying ML Models on Google Cloud Platform 13. Deploying ML Models on Amazon Web Services 14. Monitoring and Debugging 15. Post-Productionizing ML Models