Google BigQuery: The Definitive Guide

Google BigQuery: The Definitive Guide
Author :
Publisher : O'Reilly Media
Total Pages : 522
Release :
ISBN-10 : 9781492044437
ISBN-13 : 1492044431
Rating : 4/5 (37 Downloads)

Book Synopsis Google BigQuery: The Definitive Guide by : Valliappa Lakshmanan

Download or read book Google BigQuery: The Definitive Guide written by Valliappa Lakshmanan and published by O'Reilly Media. This book was released on 2019-10-23 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Work with petabyte-scale datasets while building a collaborative, agile workplace in the process. This practical book is the canonical reference to Google BigQuery, the query engine that lets you conduct interactive analysis of large datasets. BigQuery enables enterprises to efficiently store, query, ingest, and learn from their data in a convenient framework. With this book, you’ll examine how to analyze data at scale to derive insights from large datasets efficiently. Valliappa Lakshmanan, tech lead for Google Cloud Platform, and Jordan Tigani, engineering director for the BigQuery team, provide best practices for modern data warehousing within an autoscaled, serverless public cloud. Whether you want to explore parts of BigQuery you’re not familiar with or prefer to focus on specific tasks, this reference is indispensable.

Google BigQuery: The Definitive Guide

Google BigQuery: The Definitive Guide
Author :
Publisher : O'Reilly Media
Total Pages : 522
Release :
ISBN-10 : 9781492044437
ISBN-13 : 1492044431
Rating : 4/5 (37 Downloads)

Book Synopsis Google BigQuery: The Definitive Guide by : Valliappa Lakshmanan

Download or read book Google BigQuery: The Definitive Guide written by Valliappa Lakshmanan and published by O'Reilly Media. This book was released on 2019-10-23 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Work with petabyte-scale datasets while building a collaborative, agile workplace in the process. This practical book is the canonical reference to Google BigQuery, the query engine that lets you conduct interactive analysis of large datasets. BigQuery enables enterprises to efficiently store, query, ingest, and learn from their data in a convenient framework. With this book, you’ll examine how to analyze data at scale to derive insights from large datasets efficiently. Valliappa Lakshmanan, tech lead for Google Cloud Platform, and Jordan Tigani, engineering director for the BigQuery team, provide best practices for modern data warehousing within an autoscaled, serverless public cloud. Whether you want to explore parts of BigQuery you’re not familiar with or prefer to focus on specific tasks, this reference is indispensable.

The Definitive Guide to Google Vertex AI

The Definitive Guide to Google Vertex AI
Author :
Publisher : Packt Publishing Ltd
Total Pages : 422
Release :
ISBN-10 : 9781801813327
ISBN-13 : 1801813329
Rating : 4/5 (27 Downloads)

Book Synopsis The Definitive Guide to Google Vertex AI by : Jasmeet Bhatia

Download or read book The Definitive Guide to Google Vertex AI written by Jasmeet Bhatia and published by Packt Publishing Ltd. This book was released on 2023-12-29 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement machine learning pipelines with Google Cloud Vertex AI Key Features Understand the role of an AI platform and MLOps practices in machine learning projects Get acquainted with Google Vertex AI tools and offerings that help accelerate the creation of end-to-end ML solutions Implement Vision, NLP, and recommendation-based real-world ML models on Google Cloud Platform Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWhile AI has become an integral part of every organization today, the development of large-scale ML solutions and management of complex ML workflows in production continue to pose challenges for many. Google’s unified data and AI platform, Vertex AI, directly addresses these challenges with its array of MLOPs tools designed for overall workflow management. This book is a comprehensive guide that lets you explore Google Vertex AI’s easy-to-advanced level features for end-to-end ML solution development. Throughout this book, you’ll discover how Vertex AI empowers you by providing essential tools for critical tasks, including data management, model building, large-scale experimentations, metadata logging, model deployments, and monitoring. You’ll learn how to harness the full potential of Vertex AI for developing and deploying no-code, low-code, or fully customized ML solutions. This book takes a hands-on approach to developing u deploying some real-world ML solutions on Google Cloud, leveraging key technologies such as Vision, NLP, generative AI, and recommendation systems. Additionally, this book covers pre-built and turnkey solution offerings as well as guidance on seamlessly integrating them into your ML workflows. By the end of this book, you’ll have the confidence to develop and deploy large-scale production-grade ML solutions using the MLOps tooling and best practices from Google.What you will learn Understand the ML lifecycle, challenges, and importance of MLOps Get started with ML model development quickly using Google Vertex AI Manage datasets, artifacts, and experiments Develop no-code, low-code, and custom AI solution on Google Cloud Implement advanced model optimization techniques and tooling Understand pre-built and turnkey AI solution offerings from Google Build and deploy custom ML models for real-world applications Explore the latest generative AI tools within Vertex AI Who this book is for If you are a machine learning practitioner who wants to learn end-to-end ML solution development on Google Cloud Platform using MLOps best practices and tools offered by Google Vertex AI, this is the book for you.

Learning Google Analytics

Learning Google Analytics
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 368
Release :
ISBN-10 : 9781098113032
ISBN-13 : 1098113039
Rating : 4/5 (32 Downloads)

Book Synopsis Learning Google Analytics by : Mark Edmondson

Download or read book Learning Google Analytics written by Mark Edmondson and published by "O'Reilly Media, Inc.". This book was released on 2022-11-10 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why is Google Analytics 4 the most modern data model available for digital marketing analytics? Because rather than simply report what has happened, GA4's new cloud integrations enable more data activation—linking online and offline data across all your streams to provide end-to-end marketing data. This practical book prepares you for the future of digital marketing by demonstrating how GA4 supports these additional cloud integrations. Author Mark Edmondson, Google Developer Expert for Google Analytics and Google Cloud, provides a concise yet comprehensive overview of GA4 and its cloud integrations. Data, business, and marketing analysts will learn major facets of GA4's powerful new analytics model, with topics including data architecture and strategy, and data ingestion, storage, and modeling. You'll explore common data activation use cases and get guidance on how to implement them. You'll learn: How Google Cloud integrates with GA4 The potential use cases that GA4 integrations can enable Skills and resources needed to create GA4 integrations How much GA4 data capture is necessary to enable use cases The process of designing dataflows from strategy though data storage, modeling, and activation

Data Science on the Google Cloud Platform

Data Science on the Google Cloud Platform
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 429
Release :
ISBN-10 : 9781098118914
ISBN-13 : 109811891X
Rating : 4/5 (14 Downloads)

Book Synopsis Data Science on the Google Cloud Platform by : Valliappa Lakshmanan

Download or read book Data Science on the Google Cloud Platform written by Valliappa Lakshmanan and published by "O'Reilly Media, Inc.". This book was released on 2022-03-29 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build using Google Cloud Platform (GCP). This hands-on guide shows data engineers and data scientists how to implement an end-to-end data pipeline with cloud native tools on GCP. Throughout this updated second edition, you'll work through a sample business decision by employing a variety of data science approaches. Follow along by building a data pipeline in your own project on GCP, and discover how to solve data science problems in a transformative and more collaborative way. You'll learn how to: Employ best practices in building highly scalable data and ML pipelines on Google Cloud Automate and schedule data ingest using Cloud Run Create and populate a dashboard in Data Studio Build a real-time analytics pipeline using Pub/Sub, Dataflow, and BigQuery Conduct interactive data exploration with BigQuery Create a Bayesian model with Spark on Cloud Dataproc Forecast time series and do anomaly detection with BigQuery ML Aggregate within time windows with Dataflow Train explainable machine learning models with Vertex AI Operationalize ML with Vertex AI Pipelines

Practical MLOps

Practical MLOps
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 467
Release :
ISBN-10 : 9781098102968
ISBN-13 : 1098102967
Rating : 4/5 (68 Downloads)

Book Synopsis Practical MLOps by : Noah Gift

Download or read book Practical MLOps written by Noah Gift and published by "O'Reilly Media, Inc.". This book was released on 2021-09-14 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Getting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This insightful guide takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models. Current and aspiring machine learning engineers--or anyone familiar with data science and Python--will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This book gives you a head start. You'll discover how to: Apply DevOps best practices to machine learning Build production machine learning systems and maintain them Monitor, instrument, load-test, and operationalize machine learning systems Choose the correct MLOps tools for a given machine learning task Run machine learning models on a variety of platforms and devices, including mobile phones and specialized hardware

The Definitive Guide to Modernizing Applications on Google Cloud

The Definitive Guide to Modernizing Applications on Google Cloud
Author :
Publisher : Packt Publishing Ltd
Total Pages : 488
Release :
ISBN-10 : 9781800209022
ISBN-13 : 1800209029
Rating : 4/5 (22 Downloads)

Book Synopsis The Definitive Guide to Modernizing Applications on Google Cloud by : Steve (Satish) Sangapu

Download or read book The Definitive Guide to Modernizing Applications on Google Cloud written by Steve (Satish) Sangapu and published by Packt Publishing Ltd. This book was released on 2022-01-06 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with the tools, services, and functions needed for application migration to help you move from legacy applications to cloud-native on Google Cloud Key FeaturesDiscover how a sample legacy application can be transformed into a cloud-native application on Google CloudLearn where to start and how to apply application modernization techniques and toolingWork with real-world use cases and instructions to modernize an application on Google CloudBook Description Legacy applications, which comprise 75–80% of all enterprise applications, often end up being stuck in data centers. Modernizing these applications to make them cloud-native enables them to scale in a cloud environment without taking months or years to start seeing the benefits. This book will help software developers and solutions architects to modernize their applications on Google Cloud and transform them into cloud-native applications. This book helps you to build on your existing knowledge of enterprise application development and takes you on a journey through the six Rs: rehosting, replatforming, rearchitecting, repurchasing, retiring, and retaining. You'll learn how to modernize a legacy enterprise application on Google Cloud and build on existing assets and skills effectively. Taking an iterative and incremental approach to modernization, the book introduces the main services in Google Cloud in an easy-to-understand way that can be applied immediately to an application. By the end of this Google Cloud book, you'll have learned how to modernize a legacy enterprise application by exploring various interim architectures and tooling to develop a cloud-native microservices-based application. What you will learnDiscover the principles and best practices for building cloud-native applicationsStudy the six Rs of migration strategy and learn when to choose which strategyRehost a legacy enterprise application on Google Compute EngineReplatform an application to use Google Load Balancer and Google Cloud SQLRefactor into a single-page application (SPA) supported by REST servicesReplatform an application to use Google Identity Platform and Firebase AuthenticationRefactor to microservices using the strangler patternAutomate the deployment process using a CI/CD pipeline with Google Cloud BuildWho this book is for This book is for software developers and solutions architects looking to gain experience in modernizing their enterprise applications to run on Google Cloud and transform them into cloud-native applications. Basic knowledge of Java and Spring Boot is necessary. Prior knowledge of Google Cloud is useful but not mandatory.