Geometry of Vector Sheaves

Geometry of Vector Sheaves
Author :
Publisher : Springer Science & Business Media
Total Pages : 468
Release :
ISBN-10 : 0792350049
ISBN-13 : 9780792350040
Rating : 4/5 (49 Downloads)

Book Synopsis Geometry of Vector Sheaves by : Anastasios Mallios

Download or read book Geometry of Vector Sheaves written by Anastasios Mallios and published by Springer Science & Business Media. This book was released on 1998 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is part of a two-volume monograph which obtains fundamental notions and results of the standard differential geometry of smooth manifolds, without using differential calculus. Here, the sheaf-theoretic character is emphasized. This has theoretical advantages such as greater perspective, clarity and unification, but also practical benefits ranging from elementary particle physics, via gauge theories and theoretical cosmology (differential spaces), to non-linear PDEs (generalized functions). Thus, more general applications, which are no longer smooth in the classical sense, can be coped with. The treatise might also be construed as a new systematic endeavour to confront the ever-increasing notion that the world around us is far from being smooth enough.

Geometry of Vector Sheaves

Geometry of Vector Sheaves
Author :
Publisher : Springer Science & Business Media
Total Pages : 457
Release :
ISBN-10 : 9789401150064
ISBN-13 : 9401150060
Rating : 4/5 (64 Downloads)

Book Synopsis Geometry of Vector Sheaves by : Anastasios Mallios

Download or read book Geometry of Vector Sheaves written by Anastasios Mallios and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume monograph obtains fundamental notions and results of the standard differential geometry of smooth (CINFINITY) manifolds, without using differential calculus. Here, the sheaf-theoretic character is emphasised. This has theoretical advantages such as greater perspective, clarity and unification, but also practical benefits ranging from elementary particle physics, via gauge theories and theoretical cosmology (`differential spaces'), to non-linear PDEs (generalised functions). Thus, more general applications, which are no longer `smooth' in the classical sense, can be coped with. The treatise might also be construed as a new systematic endeavour to confront the ever-increasing notion that the `world around us is far from being smooth enough'. Audience: This work is intended for postgraduate students and researchers whose work involves differential geometry, global analysis, analysis on manifolds, algebraic topology, sheaf theory, cohomology, functional analysis or abstract harmonic analysis.

Geometry of Principal Sheaves

Geometry of Principal Sheaves
Author :
Publisher : Springer Science & Business Media
Total Pages : 454
Release :
ISBN-10 : 9781402034169
ISBN-13 : 1402034164
Rating : 4/5 (69 Downloads)

Book Synopsis Geometry of Principal Sheaves by : Efstathios Vassiliou

Download or read book Geometry of Principal Sheaves written by Efstathios Vassiliou and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a detailed introduction to the theory of connections on principal sheaves in the framework of Abstract Differential Geometry (ADG). This is a new approach to differential geometry based on sheaf theoretic methods, without use of ordinary calculus. This point of view complies with the demand of contemporary physics to cope with non-smooth models of physical phenomena and spaces with singularities. Starting with a brief survey of the required sheaf theory and cohomology, the exposition then moves on to differential triads (the abstraction of smooth manifolds) and Lie sheaves of groups (the abstraction of Lie groups). Having laid the groundwork, the main part of the book is devoted to the theory of connections on principal sheaves, incorporating connections on vector and associated sheaves. Topics such as the moduli sheaf of connections, classification of principal sheaves, curvature, flat connections and flat sheaves, Chern-Weil theory, are also treated. The study brings to light fundamental notions and tools of the standard differential geometry which are susceptible of the present abstraction, and whose role remains unexploited in the classical context, because of the abundance of means therein. However, most of the latter are nonsensical in ADG.

The Geometry of Moduli Spaces of Sheaves

The Geometry of Moduli Spaces of Sheaves
Author :
Publisher : Cambridge University Press
Total Pages : 345
Release :
ISBN-10 : 9781139485821
ISBN-13 : 1139485822
Rating : 4/5 (21 Downloads)

Book Synopsis The Geometry of Moduli Spaces of Sheaves by : Daniel Huybrechts

Download or read book The Geometry of Moduli Spaces of Sheaves written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2010-05-27 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.

Modern Differential Geometry in Gauge Theories

Modern Differential Geometry in Gauge Theories
Author :
Publisher : Springer Science & Business Media
Total Pages : 303
Release :
ISBN-10 : 9780817644741
ISBN-13 : 0817644741
Rating : 4/5 (41 Downloads)

Book Synopsis Modern Differential Geometry in Gauge Theories by : Anastasios Mallios

Download or read book Modern Differential Geometry in Gauge Theories written by Anastasios Mallios and published by Springer Science & Business Media. This book was released on 2006-07-27 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable

Manifolds, Sheaves, and Cohomology

Manifolds, Sheaves, and Cohomology
Author :
Publisher : Springer
Total Pages : 366
Release :
ISBN-10 : 9783658106331
ISBN-13 : 3658106336
Rating : 4/5 (31 Downloads)

Book Synopsis Manifolds, Sheaves, and Cohomology by : Torsten Wedhorn

Download or read book Manifolds, Sheaves, and Cohomology written by Torsten Wedhorn and published by Springer. This book was released on 2016-07-25 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.

Algebraic Geometry 2

Algebraic Geometry 2
Author :
Publisher : American Mathematical Soc.
Total Pages : 196
Release :
ISBN-10 : 0821813579
ISBN-13 : 9780821813577
Rating : 4/5 (79 Downloads)

Book Synopsis Algebraic Geometry 2 by : Kenji Ueno

Download or read book Algebraic Geometry 2 written by Kenji Ueno and published by American Mathematical Soc.. This book was released on 1999 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry is built upon two fundamental notions: schemes and sheaves. The theory of schemes was explained in Algebraic Geometry 1: From Algebraic Varieties to Schemes. In this volume, the author turns to the theory of sheaves and their cohomology. A sheaf is a way of keeping track of local information defined on a topological space, such as the local holomorphic functions on a complex manifold or the local sections of a vector bundle. To study schemes, it is useful to study the sheaves defined on them, especially the coherent and quasicoherent sheaves.