Geometry of Quantum States

Geometry of Quantum States
Author :
Publisher : Cambridge University Press
Total Pages : 637
Release :
ISBN-10 : 9781108293495
ISBN-13 : 1108293492
Rating : 4/5 (95 Downloads)

Book Synopsis Geometry of Quantum States by : Ingemar Bengtsson

Download or read book Geometry of Quantum States written by Ingemar Bengtsson and published by Cambridge University Press. This book was released on 2017-08-18 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum information theory is a branch of science at the frontier of physics, mathematics, and information science, and offers a variety of solutions that are impossible using classical theory. This book provides a detailed introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. The second edition contains new sections and entirely new chapters: the hot topic of multipartite entanglement; in-depth discussion of the discrete structures in finite dimensional Hilbert space, including unitary operator bases, mutually unbiased bases, symmetric informationally complete generalized measurements, discrete Wigner function, and unitary designs; the Gleason and Kochen–Specker theorems; the proof of the Lieb conjecture; the measure concentration phenomenon; and the Hastings' non-additivity theorem. This richly-illustrated book will be useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied.

Quantum Physics and Geometry

Quantum Physics and Geometry
Author :
Publisher : Springer
Total Pages : 177
Release :
ISBN-10 : 9783030061227
ISBN-13 : 3030061221
Rating : 4/5 (27 Downloads)

Book Synopsis Quantum Physics and Geometry by : Edoardo Ballico

Download or read book Quantum Physics and Geometry written by Edoardo Ballico and published by Springer. This book was released on 2019-03-13 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects independent contributions on current developments in quantum information theory, a very interdisciplinary field at the intersection of physics, computer science and mathematics. Making intense use of the most advanced concepts from each discipline, the authors give in each contribution pedagogical introductions to the main concepts underlying their present research and present a personal perspective on some of the most exciting open problems. Keeping this diverse audience in mind, special efforts have been made to ensure that the basic concepts underlying quantum information are covered in an understandable way for mathematical readers, who can find there new open challenges for their research. At the same time, the volume can also be of use to physicists wishing to learn advanced mathematical tools, especially of differential and algebraic geometric nature.

Geometric Phases in Classical and Quantum Mechanics

Geometric Phases in Classical and Quantum Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 346
Release :
ISBN-10 : 9780817681760
ISBN-13 : 0817681760
Rating : 4/5 (60 Downloads)

Book Synopsis Geometric Phases in Classical and Quantum Mechanics by : Dariusz Chruscinski

Download or read book Geometric Phases in Classical and Quantum Mechanics written by Dariusz Chruscinski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.

Quantum Geometry

Quantum Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 377
Release :
ISBN-10 : 9780521461672
ISBN-13 : 0521461677
Rating : 4/5 (72 Downloads)

Book Synopsis Quantum Geometry by : Jan Ambjørn

Download or read book Quantum Geometry written by Jan Ambjørn and published by Cambridge University Press. This book was released on 1997-06-19 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes random geometry and applications to strings, quantum gravity, topological field theory and membrane physics.

Geometry and Quantum Field Theory

Geometry and Quantum Field Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 476
Release :
ISBN-10 : 0821886835
ISBN-13 : 9780821886830
Rating : 4/5 (35 Downloads)

Book Synopsis Geometry and Quantum Field Theory by : Daniel S. Freed

Download or read book Geometry and Quantum Field Theory written by Daniel S. Freed and published by American Mathematical Soc.. This book was released on 1995 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first title in a new series, this book explores topics from classical and quantum mechanics and field theory. The material is presented at a level between that of a textbook and research papers making it ideal for graduate students. The book provides an entree into a field that promises to remain exciting and important for years to come.

Quantum Riemannian Geometry

Quantum Riemannian Geometry
Author :
Publisher : Springer Nature
Total Pages : 826
Release :
ISBN-10 : 9783030302948
ISBN-13 : 3030302946
Rating : 4/5 (48 Downloads)

Book Synopsis Quantum Riemannian Geometry by : Edwin J. Beggs

Download or read book Quantum Riemannian Geometry written by Edwin J. Beggs and published by Springer Nature. This book was released on 2020-01-31 with total page 826 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive account of a modern generalisation of differential geometry in which coordinates need not commute. This requires a reinvention of differential geometry that refers only to the coordinate algebra, now possibly noncommutative, rather than to actual points. Such a theory is needed for the geometry of Hopf algebras or quantum groups, which provide key examples, as well as in physics to model quantum gravity effects in the form of quantum spacetime. The mathematical formalism can be applied to any algebra and includes graph geometry and a Lie theory of finite groups. Even the algebra of 2 x 2 matrices turns out to admit a rich moduli of quantum Riemannian geometries. The approach taken is a `bottom up’ one in which the different layers of geometry are built up in succession, starting from differential forms and proceeding up to the notion of a quantum `Levi-Civita’ bimodule connection, geometric Laplacians and, in some cases, Dirac operators. The book also covers elements of Connes’ approach to the subject coming from cyclic cohomology and spectral triples. Other topics include various other cohomology theories, holomorphic structures and noncommutative D-modules. A unique feature of the book is its constructive approach and its wealth of examples drawn from a large body of literature in mathematical physics, now put on a firm algebraic footing. Including exercises with solutions, it can be used as a textbook for advanced courses as well as a reference for researchers.

Coherent States

Coherent States
Author :
Publisher : World Scientific
Total Pages : 934
Release :
ISBN-10 : 9971966522
ISBN-13 : 9789971966522
Rating : 4/5 (22 Downloads)

Book Synopsis Coherent States by : John R. Klauder

Download or read book Coherent States written by John R. Klauder and published by World Scientific. This book was released on 1985 with total page 934 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a review on coherent states and some of their applications. The usefulness of the concept of coherent states is illustrated by considering specific examples from the fields of physics and mathematical physics. Particular emphasis is given to a general historical introduction, general continuous representations, generalized coherent states, classical and quantum correspondence, path integrals and canonical formalism. Applications are considered in quantum mechanics, optics, quantum chemistry, atomic physics, statistical physics, nuclear physics, particle physics and cosmology. A selection of original papers is reprinted.