Geometric Structure of High-Dimensional Data and Dimensionality Reduction

Geometric Structure of High-Dimensional Data and Dimensionality Reduction
Author :
Publisher : Springer Science & Business Media
Total Pages : 363
Release :
ISBN-10 : 9783642274978
ISBN-13 : 3642274978
Rating : 4/5 (78 Downloads)

Book Synopsis Geometric Structure of High-Dimensional Data and Dimensionality Reduction by : Jianzhong Wang

Download or read book Geometric Structure of High-Dimensional Data and Dimensionality Reduction written by Jianzhong Wang and published by Springer Science & Business Media. This book was released on 2012-04-28 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Geometric Structure of High-Dimensional Data and Dimensionality Reduction" adopts data geometry as a framework to address various methods of dimensionality reduction. In addition to the introduction to well-known linear methods, the book moreover stresses the recently developed nonlinear methods and introduces the applications of dimensionality reduction in many areas, such as face recognition, image segmentation, data classification, data visualization, and hyperspectral imagery data analysis. Numerous tables and graphs are included to illustrate the ideas, effects, and shortcomings of the methods. MATLAB code of all dimensionality reduction algorithms is provided to aid the readers with the implementations on computers. The book will be useful for mathematicians, statisticians, computer scientists, and data analysts. It is also a valuable handbook for other practitioners who have a basic background in mathematics, statistics and/or computer algorithms, like internet search engine designers, physicists, geologists, electronic engineers, and economists. Jianzhong Wang is a Professor of Mathematics at Sam Houston State University, U.S.A.

Intelligent Information Processing XII

Intelligent Information Processing XII
Author :
Publisher : Springer Nature
Total Pages : 518
Release :
ISBN-10 : 9783031578083
ISBN-13 : 3031578082
Rating : 4/5 (83 Downloads)

Book Synopsis Intelligent Information Processing XII by : Zhongzhi Shi

Download or read book Intelligent Information Processing XII written by Zhongzhi Shi and published by Springer Nature. This book was released on with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Elements of Dimensionality Reduction and Manifold Learning

Elements of Dimensionality Reduction and Manifold Learning
Author :
Publisher : Springer Nature
Total Pages : 617
Release :
ISBN-10 : 9783031106026
ISBN-13 : 3031106024
Rating : 4/5 (26 Downloads)

Book Synopsis Elements of Dimensionality Reduction and Manifold Learning by : Benyamin Ghojogh

Download or read book Elements of Dimensionality Reduction and Manifold Learning written by Benyamin Ghojogh and published by Springer Nature. This book was released on 2023-02-02 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dimensionality reduction, also known as manifold learning, is an area of machine learning used for extracting informative features from data for better representation of data or separation between classes. This book presents a cohesive review of linear and nonlinear dimensionality reduction and manifold learning. Three main aspects of dimensionality reduction are covered: spectral dimensionality reduction, probabilistic dimensionality reduction, and neural network-based dimensionality reduction, which have geometric, probabilistic, and information-theoretic points of view to dimensionality reduction, respectively. The necessary background and preliminaries on linear algebra, optimization, and kernels are also explained to ensure a comprehensive understanding of the algorithms. The tools introduced in this book can be applied to various applications involving feature extraction, image processing, computer vision, and signal processing. This book is applicable to a wide audience who would like to acquire a deep understanding of the various ways to extract, transform, and understand the structure of data. The intended audiences are academics, students, and industry professionals. Academic researchers and students can use this book as a textbook for machine learning and dimensionality reduction. Data scientists, machine learning scientists, computer vision scientists, and computer scientists can use this book as a reference. It can also be helpful to statisticians in the field of statistical learning and applied mathematicians in the fields of manifolds and subspace analysis. Industry professionals, including applied engineers, data engineers, and engineers in various fields of science dealing with machine learning, can use this as a guidebook for feature extraction from their data, as the raw data in industry often require preprocessing. The book is grounded in theory but provides thorough explanations and diverse examples to improve the reader’s comprehension of the advanced topics. Advanced methods are explained in a step-by-step manner so that readers of all levels can follow the reasoning and come to a deep understanding of the concepts. This book does not assume advanced theoretical background in machine learning and provides necessary background, although an undergraduate-level background in linear algebra and calculus is recommended.

Intelligent Visual Surveillance

Intelligent Visual Surveillance
Author :
Publisher : Springer
Total Pages : 167
Release :
ISBN-10 : 9789811034763
ISBN-13 : 9811034761
Rating : 4/5 (63 Downloads)

Book Synopsis Intelligent Visual Surveillance by : Zhang Zhang

Download or read book Intelligent Visual Surveillance written by Zhang Zhang and published by Springer. This book was released on 2016-12-20 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th Chinese Conference, IVS 2016, held in Beijing, China, in October 2016. The 19 revised full papers presented were carefully reviewed and selected from 45 submissions. The papers are organized in topical sections on low-level preprocessing, surveillance systems; tracking, robotics; identification, detection, recognition; behavior, activities, crowd analysis.

The Essentials of Machine Learning in Finance and Accounting

The Essentials of Machine Learning in Finance and Accounting
Author :
Publisher : Routledge
Total Pages : 259
Release :
ISBN-10 : 9781000394115
ISBN-13 : 1000394115
Rating : 4/5 (15 Downloads)

Book Synopsis The Essentials of Machine Learning in Finance and Accounting by : Mohammad Zoynul Abedin

Download or read book The Essentials of Machine Learning in Finance and Accounting written by Mohammad Zoynul Abedin and published by Routledge. This book was released on 2021-06-20 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: • A useful guide to financial product modeling and to minimizing business risk and uncertainty • Looks at wide range of financial assets and markets and correlates them with enterprises’ profitability • Introduces advanced and novel machine learning techniques in finance such as Support Vector Machine, Neural Networks, Random Forest, K-Nearest Neighbors, Extreme Learning Machine, Deep Learning Approaches and applies them to analyze finance data sets • Real world applicable examples to further understanding

Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining
Author :
Publisher : Springer
Total Pages : 625
Release :
ISBN-10 : 9783319317533
ISBN-13 : 3319317539
Rating : 4/5 (33 Downloads)

Book Synopsis Advances in Knowledge Discovery and Data Mining by : James Bailey

Download or read book Advances in Knowledge Discovery and Data Mining written by James Bailey and published by Springer. This book was released on 2016-04-11 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set, LNAI 9651 and 9652, constitutes the thoroughly refereed proceedings of the 20th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2016, held in Auckland, New Zealand, in April 2016. The 91 full papers were carefully reviewed and selected from 307 submissions. They are organized in topical sections named: classification; machine learning; applications; novel methods and algorithms; opinion mining and sentiment analysis; clustering; feature extraction and pattern mining; graph and network data; spatiotemporal and image data; anomaly detection and clustering; novel models and algorithms; and text mining and recommender systems.

Persistence Theory: From Quiver Representations to Data Analysis

Persistence Theory: From Quiver Representations to Data Analysis
Author :
Publisher : American Mathematical Soc.
Total Pages : 229
Release :
ISBN-10 : 9781470434434
ISBN-13 : 1470434431
Rating : 4/5 (34 Downloads)

Book Synopsis Persistence Theory: From Quiver Representations to Data Analysis by : Steve Y. Oudot

Download or read book Persistence Theory: From Quiver Representations to Data Analysis written by Steve Y. Oudot and published by American Mathematical Soc.. This book was released on 2017-05-17 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.