Geometric measure theory : an introduction

Geometric measure theory : an introduction
Author :
Publisher :
Total Pages : 237
Release :
ISBN-10 : 1571462082
ISBN-13 : 9781571462084
Rating : 4/5 (82 Downloads)

Book Synopsis Geometric measure theory : an introduction by : Fanghua Lin

Download or read book Geometric measure theory : an introduction written by Fanghua Lin and published by . This book was released on 2010 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometric Measure Theory

Geometric Measure Theory
Author :
Publisher : Elsevier
Total Pages : 154
Release :
ISBN-10 : 9781483277806
ISBN-13 : 1483277801
Rating : 4/5 (06 Downloads)

Book Synopsis Geometric Measure Theory by : Frank Morgan

Download or read book Geometric Measure Theory written by Frank Morgan and published by Elsevier. This book was released on 2014-05-10 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Measure Theory: A Beginner's Guide provides information pertinent to the development of geometric measure theory. This book presents a few fundamental arguments and a superficial discussion of the regularity theory. Organized into 12 chapters, this book begins with an overview of the purpose and fundamental concepts of geometric measure theory. This text then provides the measure-theoretic foundation, including the definition of Hausdorff measure and covering theory. Other chapters consider the m-dimensional surfaces of geometric measure theory called rectifiable sets and introduce the two basic tools of the regularity theory of area-minimizing surfaces. This book discusses as well the fundamental theorem of geometric measure theory, which guarantees solutions to a wide class of variational problems in general dimensions. The final chapter deals with the basic methods of geometry and analysis in a generality that embraces manifold applications. This book is a valuable resource for graduate students, mathematicians, and research workers.

Geometric Measure Theory

Geometric Measure Theory
Author :
Publisher : Springer
Total Pages : 694
Release :
ISBN-10 : 9783642620102
ISBN-13 : 3642620108
Rating : 4/5 (02 Downloads)

Book Synopsis Geometric Measure Theory by : Herbert Federer

Download or read book Geometric Measure Theory written by Herbert Federer and published by Springer. This book was released on 2014-11-25 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a major treatise in mathematics and is essential in the working library of the modern analyst." (Bulletin of the London Mathematical Society)

Sets of Finite Perimeter and Geometric Variational Problems

Sets of Finite Perimeter and Geometric Variational Problems
Author :
Publisher : Cambridge University Press
Total Pages : 475
Release :
ISBN-10 : 9781139560894
ISBN-13 : 1139560891
Rating : 4/5 (94 Downloads)

Book Synopsis Sets of Finite Perimeter and Geometric Variational Problems by : Francesco Maggi

Download or read book Sets of Finite Perimeter and Geometric Variational Problems written by Francesco Maggi and published by Cambridge University Press. This book was released on 2012-08-09 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension 8. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory.

An Introduction to Measure Theory

An Introduction to Measure Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 206
Release :
ISBN-10 : 9781470466404
ISBN-13 : 1470466406
Rating : 4/5 (04 Downloads)

Book Synopsis An Introduction to Measure Theory by : Terence Tao

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Geometric Integration Theory

Geometric Integration Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 344
Release :
ISBN-10 : 9780817646790
ISBN-13 : 0817646795
Rating : 4/5 (90 Downloads)

Book Synopsis Geometric Integration Theory by : Steven G. Krantz

Download or read book Geometric Integration Theory written by Steven G. Krantz and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.

Lectures on Geometric Measure Theory

Lectures on Geometric Measure Theory
Author :
Publisher :
Total Pages : 286
Release :
ISBN-10 : 0867844299
ISBN-13 : 9780867844290
Rating : 4/5 (99 Downloads)

Book Synopsis Lectures on Geometric Measure Theory by : Leon Simon

Download or read book Lectures on Geometric Measure Theory written by Leon Simon and published by . This book was released on 1984 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: