Geometric Algebra for Computer Science

Geometric Algebra for Computer Science
Author :
Publisher : Elsevier
Total Pages : 664
Release :
ISBN-10 : 9780080553108
ISBN-13 : 0080553109
Rating : 4/5 (08 Downloads)

Book Synopsis Geometric Algebra for Computer Science by : Leo Dorst

Download or read book Geometric Algebra for Computer Science written by Leo Dorst and published by Elsevier. This book was released on 2010-07-26 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA

Applications of Geometric Algebra in Computer Science and Engineering

Applications of Geometric Algebra in Computer Science and Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 479
Release :
ISBN-10 : 9781461200895
ISBN-13 : 146120089X
Rating : 4/5 (95 Downloads)

Book Synopsis Applications of Geometric Algebra in Computer Science and Engineering by : Leo Dorst

Download or read book Applications of Geometric Algebra in Computer Science and Engineering written by Leo Dorst and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi- particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.

Geometric Algebra Computing

Geometric Algebra Computing
Author :
Publisher : Springer
Total Pages : 526
Release :
ISBN-10 : 1447157680
ISBN-13 : 9781447157687
Rating : 4/5 (80 Downloads)

Book Synopsis Geometric Algebra Computing by : Eduardo Bayro Corrochano

Download or read book Geometric Algebra Computing written by Eduardo Bayro Corrochano and published by Springer. This book was released on 2014-09-25 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.

Geometric Algebra for Computer Graphics

Geometric Algebra for Computer Graphics
Author :
Publisher : Springer Science & Business Media
Total Pages : 268
Release :
ISBN-10 : 9781846289965
ISBN-13 : 1846289963
Rating : 4/5 (65 Downloads)

Book Synopsis Geometric Algebra for Computer Graphics by : John Vince

Download or read book Geometric Algebra for Computer Graphics written by John Vince and published by Springer Science & Business Media. This book was released on 2008-04-21 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems. The author tackles this complex subject with inimitable style, and provides an accessible and very readable introduction. The book is filled with lots of clear examples and is very well illustrated. Introductory chapters look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics.

Geometric Algebra: An Algebraic System for Computer Games and Animation

Geometric Algebra: An Algebraic System for Computer Games and Animation
Author :
Publisher : Springer Science & Business Media
Total Pages : 203
Release :
ISBN-10 : 9781848823792
ISBN-13 : 1848823797
Rating : 4/5 (92 Downloads)

Book Synopsis Geometric Algebra: An Algebraic System for Computer Games and Animation by : John A. Vince

Download or read book Geometric Algebra: An Algebraic System for Computer Games and Animation written by John A. Vince and published by Springer Science & Business Media. This book was released on 2009-05-20 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric algebra is still treated as an obscure branch of algebra and most books have been written by competent mathematicians in a very abstract style. This restricts the readership of such books especially by programmers working in computer graphics, who simply want guidance on algorithm design. Geometric algebra provides a unified algebraic system for solving a wide variety of geometric problems. John Vince reveals the beauty of this algebraic framework and communicates to the reader new and unusual mathematical concepts using colour illustrations, tabulations, and easy-to-follow algebraic proofs. The book includes many worked examples to show how the algebra works in practice and is essential reading for anyone involved in designing 3D geometric algorithms.

Foundations of Geometric Algebra Computing

Foundations of Geometric Algebra Computing
Author :
Publisher : Springer Science & Business Media
Total Pages : 217
Release :
ISBN-10 : 9783642317941
ISBN-13 : 3642317944
Rating : 4/5 (41 Downloads)

Book Synopsis Foundations of Geometric Algebra Computing by : Dietmar Hildenbrand

Download or read book Foundations of Geometric Algebra Computing written by Dietmar Hildenbrand and published by Springer Science & Business Media. This book was released on 2012-12-31 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.

Understanding Geometric Algebra

Understanding Geometric Algebra
Author :
Publisher : CRC Press
Total Pages : 207
Release :
ISBN-10 : 9781482259513
ISBN-13 : 1482259516
Rating : 4/5 (13 Downloads)

Book Synopsis Understanding Geometric Algebra by : Kenichi Kanatani

Download or read book Understanding Geometric Algebra written by Kenichi Kanatani and published by CRC Press. This book was released on 2015-04-06 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics introduces geometric algebra with an emphasis on the background mathematics of Hamilton, Grassmann, and Clifford. It shows how to describe and compute geometry for 3D modeling applications in computer graphics and computer vision.Unlike similar texts