Genetic Programming III

Genetic Programming III
Author :
Publisher : Morgan Kaufmann
Total Pages : 1516
Release :
ISBN-10 : 1558605436
ISBN-13 : 9781558605435
Rating : 4/5 (36 Downloads)

Book Synopsis Genetic Programming III by : John R. Koza

Download or read book Genetic Programming III written by John R. Koza and published by Morgan Kaufmann. This book was released on 1999 with total page 1516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic programming (GP) is a method for getting a computer to solve a problem by telling it what needs to be done instead of how to do it. Koza, Bennett, Andre, and Keane present genetically evolved solutions to dozens of problems of design, control, classification, system identification, and computational molecular biology. Among the solutions are 14 results competitive with human-produced results, including 10 rediscoveries of previously patented inventions.

Linear Genetic Programming

Linear Genetic Programming
Author :
Publisher : Springer Science & Business Media
Total Pages : 323
Release :
ISBN-10 : 9780387310305
ISBN-13 : 0387310304
Rating : 4/5 (05 Downloads)

Book Synopsis Linear Genetic Programming by : Markus F. Brameier

Download or read book Linear Genetic Programming written by Markus F. Brameier and published by Springer Science & Business Media. This book was released on 2007-02-25 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Genetic Programming presents a variant of Genetic Programming that evolves imperative computer programs as linear sequences of instructions, in contrast to the more traditional functional expressions or syntax trees. Typical GP phenomena, such as non-effective code, neutral variations, and code growth are investigated from the perspective of linear GP. This book serves as a reference for researchers; it includes sufficient introductory material for students and newcomers to the field.

Genetic Programming IV

Genetic Programming IV
Author :
Publisher : Springer Science & Business Media
Total Pages : 626
Release :
ISBN-10 : 0387250670
ISBN-13 : 9780387250670
Rating : 4/5 (70 Downloads)

Book Synopsis Genetic Programming IV by : John R. Koza

Download or read book Genetic Programming IV written by John R. Koza and published by Springer Science & Business Media. This book was released on 2005-03-21 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic Programming IV: Routine Human-Competitive Machine Intelligence presents the application of GP to a wide variety of problems involving automated synthesis of controllers, circuits, antennas, genetic networks, and metabolic pathways. The book describes fifteen instances where GP has created an entity that either infringes or duplicates the functionality of a previously patented 20th-century invention, six instances where it has done the same with respect to post-2000 patented inventions, two instances where GP has created a patentable new invention, and thirteen other human-competitive results. The book additionally establishes: GP now delivers routine human-competitive machine intelligence GP is an automated invention machine GP can create general solutions to problems in the form of parameterized topologies GP has delivered qualitatively more substantial results in synchrony with the relentless iteration of Moore's Law

Genetic Programming

Genetic Programming
Author :
Publisher : Springer Science & Business
Total Pages : 506
Release :
ISBN-10 : 155860510X
ISBN-13 : 9781558605107
Rating : 4/5 (0X Downloads)

Book Synopsis Genetic Programming by : Wolfgang Banzhaf

Download or read book Genetic Programming written by Wolfgang Banzhaf and published by Springer Science & Business. This book was released on 1998 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: To order this title for shipment to Austria, Germany, or Switzerland, please contact dpunkt verlag directly. "[The authors] have performed a remarkable double service with this excellent book on genetic programming. First, they give an up-to-date view of the rapidly growing field of automatic creation of computer programs by means of evolution and, second, they bring together their own innovative and formidable work on evolution of assembly language machine code and linear genomes." --John R. Koza Since the early 1990s, genetic programming (GP)-a discipline whose goal is to enable the automatic generation of computer programs-has emerged as one of the most promising paradigms for fast, productive software development. GP combines biological metaphors gleaned from Darwin's theory of evolution with computer-science approaches drawn from the field of machine learning to create programs that are capable of adapting or recreating themselves for open-ended tasks. This unique introduction to GP provides a detailed overview of the subject and its antecedents, with extensive references to the published and online literature. In addition to explaining the fundamental theory and important algorithms, the text includes practical discussions covering a wealth of potential applications and real-world implementation techniques. Software professionals needing to understand and apply GP concepts will find this book an invaluable practical and theoretical guide.

Genetic Programming for Image Classification

Genetic Programming for Image Classification
Author :
Publisher : Springer Nature
Total Pages : 279
Release :
ISBN-10 : 9783030659271
ISBN-13 : 3030659275
Rating : 4/5 (71 Downloads)

Book Synopsis Genetic Programming for Image Classification by : Ying Bi

Download or read book Genetic Programming for Image Classification written by Ying Bi and published by Springer Nature. This book was released on 2021-02-08 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers several new GP approaches to feature learning for image classification. Image classification is an important task in computer vision and machine learning with a wide range of applications. Feature learning is a fundamental step in image classification, but it is difficult due to the high variations of images. Genetic Programming (GP) is an evolutionary computation technique that can automatically evolve computer programs to solve any given problem. This is an important research field of GP and image classification. No book has been published in this field. This book shows how different techniques, e.g., image operators, ensembles, and surrogate, are proposed and employed to improve the accuracy and/or computational efficiency of GP for image classification. The proposed methods are applied to many different image classification tasks, and the effectiveness and interpretability of the learned models will be demonstrated. This book is suitable as a graduate and postgraduate level textbook in artificial intelligence, machine learning, computer vision, and evolutionary computation.

Genetic Algorithms and Genetic Programming in Computational Finance

Genetic Algorithms and Genetic Programming in Computational Finance
Author :
Publisher : Springer Science & Business Media
Total Pages : 491
Release :
ISBN-10 : 9781461508359
ISBN-13 : 1461508355
Rating : 4/5 (59 Downloads)

Book Synopsis Genetic Algorithms and Genetic Programming in Computational Finance by : Shu-Heng Chen

Download or read book Genetic Algorithms and Genetic Programming in Computational Finance written by Shu-Heng Chen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a decade of development, genetic algorithms and genetic programming have become a widely accepted toolkit for computational finance. Genetic Algorithms and Genetic Programming in Computational Finance is a pioneering volume devoted entirely to a systematic and comprehensive review of this subject. Chapters cover various areas of computational finance, including financial forecasting, trading strategies development, cash flow management, option pricing, portfolio management, volatility modeling, arbitraging, and agent-based simulations of artificial stock markets. Two tutorial chapters are also included to help readers quickly grasp the essence of these tools. Finally, a menu-driven software program, Simple GP, accompanies the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.

An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms
Author :
Publisher : MIT Press
Total Pages : 226
Release :
ISBN-10 : 0262631857
ISBN-13 : 9780262631853
Rating : 4/5 (57 Downloads)

Book Synopsis An Introduction to Genetic Algorithms by : Melanie Mitchell

Download or read book An Introduction to Genetic Algorithms written by Melanie Mitchell and published by MIT Press. This book was released on 1998-03-02 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.