Genetic Algorithms and Genetic Programming

Genetic Algorithms and Genetic Programming
Author :
Publisher : CRC Press
Total Pages : 395
Release :
ISBN-10 : 9781420011326
ISBN-13 : 1420011324
Rating : 4/5 (26 Downloads)

Book Synopsis Genetic Algorithms and Genetic Programming by : Michael Affenzeller

Download or read book Genetic Algorithms and Genetic Programming written by Michael Affenzeller and published by CRC Press. This book was released on 2009-04-09 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for al

Genetic Algorithms and Genetic Programming in Computational Finance

Genetic Algorithms and Genetic Programming in Computational Finance
Author :
Publisher : Springer Science & Business Media
Total Pages : 491
Release :
ISBN-10 : 9781461508359
ISBN-13 : 1461508355
Rating : 4/5 (59 Downloads)

Book Synopsis Genetic Algorithms and Genetic Programming in Computational Finance by : Shu-Heng Chen

Download or read book Genetic Algorithms and Genetic Programming in Computational Finance written by Shu-Heng Chen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a decade of development, genetic algorithms and genetic programming have become a widely accepted toolkit for computational finance. Genetic Algorithms and Genetic Programming in Computational Finance is a pioneering volume devoted entirely to a systematic and comprehensive review of this subject. Chapters cover various areas of computational finance, including financial forecasting, trading strategies development, cash flow management, option pricing, portfolio management, volatility modeling, arbitraging, and agent-based simulations of artificial stock markets. Two tutorial chapters are also included to help readers quickly grasp the essence of these tools. Finally, a menu-driven software program, Simple GP, accompanies the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.

An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms
Author :
Publisher : MIT Press
Total Pages : 226
Release :
ISBN-10 : 0262631857
ISBN-13 : 9780262631853
Rating : 4/5 (57 Downloads)

Book Synopsis An Introduction to Genetic Algorithms by : Melanie Mitchell

Download or read book An Introduction to Genetic Algorithms written by Melanie Mitchell and published by MIT Press. This book was released on 1998-03-02 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

Genetic Algorithms + Data Structures = Evolution Programs

Genetic Algorithms + Data Structures = Evolution Programs
Author :
Publisher : Springer Science & Business Media
Total Pages : 392
Release :
ISBN-10 : 9783662033159
ISBN-13 : 3662033151
Rating : 4/5 (59 Downloads)

Book Synopsis Genetic Algorithms + Data Structures = Evolution Programs by : Zbigniew Michalewicz

Download or read book Genetic Algorithms + Data Structures = Evolution Programs written by Zbigniew Michalewicz and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques is still growing, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science. The book is self-contained and the only prerequisite is basic undergraduate mathematics. This third edition has been substantially revised and extended by three new chapters and by additional appendices containing working material to cover recent developments and a change in the perception of evolutionary computation.

Genetic Programming III

Genetic Programming III
Author :
Publisher : Morgan Kaufmann
Total Pages : 1516
Release :
ISBN-10 : 1558605436
ISBN-13 : 9781558605435
Rating : 4/5 (36 Downloads)

Book Synopsis Genetic Programming III by : John R. Koza

Download or read book Genetic Programming III written by John R. Koza and published by Morgan Kaufmann. This book was released on 1999 with total page 1516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic programming (GP) is a method for getting a computer to solve a problem by telling it what needs to be done instead of how to do it. Koza, Bennett, Andre, and Keane present genetically evolved solutions to dozens of problems of design, control, classification, system identification, and computational molecular biology. Among the solutions are 14 results competitive with human-produced results, including 10 rediscoveries of previously patented inventions.

Genetic Algorithms + Data Structures = Evolution Programs

Genetic Algorithms + Data Structures = Evolution Programs
Author :
Publisher : Springer Science & Business Media
Total Pages : 257
Release :
ISBN-10 : 9783662028308
ISBN-13 : 3662028301
Rating : 4/5 (08 Downloads)

Book Synopsis Genetic Algorithms + Data Structures = Evolution Programs by : Zbigniew Michalewicz

Download or read book Genetic Algorithms + Data Structures = Evolution Programs written by Zbigniew Michalewicz and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'What does your Master teach?' asked a visitor. 'Nothing,' said the disciple. 'Then why does he give discourses?' 'He only points the way - he teaches nothing.' Anthony de Mello, One Minute Wisdom During the last three decades there has been a growing interest in algorithms which rely on analogies to natural processes. The emergence of massively par allel computers made these algorithms of practical interest. The best known algorithms in this class include evolutionary programming, genetic algorithms, evolution strategies, simulated annealing, classifier systems, and neural net works. Recently (1-3 October 1990) the University of Dortmund, Germany, hosted the First Workshop on Parallel Problem Solving from Nature [164]. This book discusses a subclass of these algorithms - those which are based on the principle of evolution (survival of the fittest). In such algorithms a popu lation of individuals (potential solutions) undergoes a sequence of unary (muta tion type) and higher order (crossover type) transformations. These individuals strive for survival: a selection scheme, biased towards fitter individuals, selects the next generation. After some number of generations, the program converges - the best individual hopefully represents the optimum solution. There are many different algorithms in this category. To underline the sim ilarities between them we use the common term "evolution programs" .

The Nature of Code

The Nature of Code
Author :
Publisher : No Starch Press
Total Pages : 642
Release :
ISBN-10 : 9781718503717
ISBN-13 : 1718503717
Rating : 4/5 (17 Downloads)

Book Synopsis The Nature of Code by : Daniel Shiffman

Download or read book The Nature of Code written by Daniel Shiffman and published by No Starch Press. This book was released on 2024-09-03 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.