Fundamentals of Neural Networks

Fundamentals of Neural Networks
Author :
Publisher : Prentice Hall
Total Pages : 300
Release :
ISBN-10 : 013336769X
ISBN-13 : 9780133367690
Rating : 4/5 (9X Downloads)

Book Synopsis Fundamentals of Neural Networks by : Fausett

Download or read book Fundamentals of Neural Networks written by Fausett and published by Prentice Hall. This book was released on 1994 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fundamentals of Artificial Neural Networks

Fundamentals of Artificial Neural Networks
Author :
Publisher : MIT Press
Total Pages : 546
Release :
ISBN-10 : 026208239X
ISBN-13 : 9780262082396
Rating : 4/5 (9X Downloads)

Book Synopsis Fundamentals of Artificial Neural Networks by : Mohamad H. Hassoun

Download or read book Fundamentals of Artificial Neural Networks written by Mohamad H. Hassoun and published by MIT Press. This book was released on 1995 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic account of artificial neural network paradigms that identifies fundamental concepts and major methodologies. Important results are integrated into the text in order to explain a wide range of existing empirical observations and commonly used heuristics.

Neural Networks for Applied Sciences and Engineering

Neural Networks for Applied Sciences and Engineering
Author :
Publisher : CRC Press
Total Pages : 596
Release :
ISBN-10 : 9781420013061
ISBN-13 : 1420013068
Rating : 4/5 (61 Downloads)

Book Synopsis Neural Networks for Applied Sciences and Engineering by : Sandhya Samarasinghe

Download or read book Neural Networks for Applied Sciences and Engineering written by Sandhya Samarasinghe and published by CRC Press. This book was released on 2016-04-19 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in

Neural Networks and Deep Learning

Neural Networks and Deep Learning
Author :
Publisher : Springer
Total Pages : 512
Release :
ISBN-10 : 9783319944630
ISBN-13 : 3319944630
Rating : 4/5 (30 Downloads)

Book Synopsis Neural Networks and Deep Learning by : Charu C. Aggarwal

Download or read book Neural Networks and Deep Learning written by Charu C. Aggarwal and published by Springer. This book was released on 2018-08-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Fundamentals of Neural Networks: Architectures, Algorithms and Applications

Fundamentals of Neural Networks: Architectures, Algorithms and Applications
Author :
Publisher : Pearson Education India
Total Pages : 472
Release :
ISBN-10 : 8131700534
ISBN-13 : 9788131700532
Rating : 4/5 (34 Downloads)

Book Synopsis Fundamentals of Neural Networks: Architectures, Algorithms and Applications by : Laurene V. Fausett

Download or read book Fundamentals of Neural Networks: Architectures, Algorithms and Applications written by Laurene V. Fausett and published by Pearson Education India. This book was released on 2006 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Static and Dynamic Neural Networks

Static and Dynamic Neural Networks
Author :
Publisher : John Wiley & Sons
Total Pages : 752
Release :
ISBN-10 : 9780471460923
ISBN-13 : 0471460923
Rating : 4/5 (23 Downloads)

Book Synopsis Static and Dynamic Neural Networks by : Madan Gupta

Download or read book Static and Dynamic Neural Networks written by Madan Gupta and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuronale Netze haben sich in vielen Bereichen der Informatik und künstlichen Intelligenz, der Robotik, Prozeßsteuerung und Entscheidungsfindung bewährt. Um solche Netze für immer komplexere Aufgaben entwickeln zu können, benötigen Sie solide Kenntnisse der Theorie statischer und dynamischer neuronaler Netze. Aneignen können Sie sie sich mit diesem Lehrbuch! Alle theoretischen Konzepte sind in anschaulicher Weise mit praktischen Anwendungen verknüpft. Am Ende jedes Kapitels können Sie Ihren Wissensstand anhand von Übungsaufgaben überprüfen.

Fundamentals of Deep Learning

Fundamentals of Deep Learning
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 272
Release :
ISBN-10 : 9781491925560
ISBN-13 : 1491925566
Rating : 4/5 (60 Downloads)

Book Synopsis Fundamentals of Deep Learning by : Nikhil Buduma

Download or read book Fundamentals of Deep Learning written by Nikhil Buduma and published by "O'Reilly Media, Inc.". This book was released on 2017-05-25 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning