From Frenet to Cartan: The Method of Moving Frames

From Frenet to Cartan: The Method of Moving Frames
Author :
Publisher : American Mathematical Soc.
Total Pages : 433
Release :
ISBN-10 : 9781470429522
ISBN-13 : 1470429527
Rating : 4/5 (22 Downloads)

Book Synopsis From Frenet to Cartan: The Method of Moving Frames by : Jeanne N. Clelland

Download or read book From Frenet to Cartan: The Method of Moving Frames written by Jeanne N. Clelland and published by American Mathematical Soc.. This book was released on 2017-03-29 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: The method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its development continues today with the work of Fels, Olver, and others. This book is an introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this method to compute local geometric invariants for curves and surfaces in various 3-dimensional homogeneous spaces, including Euclidean, Minkowski, equi-affine, and projective spaces. Later chapters include applications to several classical problems in differential geometry, as well as an introduction to the nonhomogeneous case via moving frames on Riemannian manifolds. The book is written in a reader-friendly style, building on already familiar concepts from curves and surfaces in Euclidean space. A special feature of this book is the inclusion of detailed guidance regarding the use of the computer algebra system Maple™ to perform many of the computations involved in the exercises.

Cartan for Beginners

Cartan for Beginners
Author :
Publisher : American Mathematical Soc.
Total Pages : 394
Release :
ISBN-10 : 9780821833759
ISBN-13 : 0821833758
Rating : 4/5 (59 Downloads)

Book Synopsis Cartan for Beginners by : Thomas Andrew Ivey

Download or read book Cartan for Beginners written by Thomas Andrew Ivey and published by American Mathematical Soc.. This book was released on 2003 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.

Riemannian Geometry in an Orthogonal Frame

Riemannian Geometry in an Orthogonal Frame
Author :
Publisher : World Scientific
Total Pages : 284
Release :
ISBN-10 : 9810247478
ISBN-13 : 9789810247478
Rating : 4/5 (78 Downloads)

Book Synopsis Riemannian Geometry in an Orthogonal Frame by : Elie Cartan

Download or read book Riemannian Geometry in an Orthogonal Frame written by Elie Cartan and published by World Scientific. This book was released on 2001 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elie Cartan's book Geometry of Riemannian Manifolds (1928) was one of the best introductions to his methods. It was based on lectures given by the author at the Sorbonne in the academic year 1925-26. A modernized and extensively augmented edition appeared in 1946 (2nd printing, 1951, and 3rd printing, 1988). Cartan's lectures in 1926-27 were different -- he introduced exterior forms at the very beginning and used extensively orthonormal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. The lectures were translated into Russian in the book Riemannian Geometry in an Orthogonal Frame (1960). This book has many innovations, such as the notion of intrinsic normal differentiation and the Gaussian torsion of a submanifold in a Euclidean multidimensional space or in a space of constant curvature, an affine connection defined in a normal fiber bundle of a submanifold, etc. The only book of Elie Cartan that was not available in English, it has now been translated into English by Vladislav V Goldberg, the editor of the Russian edition.

Differential Geometry

Differential Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 452
Release :
ISBN-10 : 0387947329
ISBN-13 : 9780387947327
Rating : 4/5 (29 Downloads)

Book Synopsis Differential Geometry by : R.W. Sharpe

Download or read book Differential Geometry written by R.W. Sharpe and published by Springer Science & Business Media. This book was released on 2000-11-21 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cartan geometries were the first examples of connections on a principal bundle. They seem to be almost unknown these days, in spite of the great beauty and conceptual power they confer on geometry. The aim of the present book is to fill the gap in the literature on differential geometry by the missing notion of Cartan connections. Although the author had in mind a book accessible to graduate students, potential readers would also include working differential geometers who would like to know more about what Cartan did, which was to give a notion of "espaces généralisés" (= Cartan geometries) generalizing homogeneous spaces (= Klein geometries) in the same way that Riemannian geometry generalizes Euclidean geometry. In addition, physicists will be interested to see the fully satisfying way in which their gauge theory can be truly regarded as geometry.

Elementary Differential Geometry

Elementary Differential Geometry
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:1141404274
ISBN-13 :
Rating : 4/5 (74 Downloads)

Book Synopsis Elementary Differential Geometry by :

Download or read book Elementary Differential Geometry written by and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Classical Invariant Theory

Classical Invariant Theory
Author :
Publisher : Cambridge University Press
Total Pages : 308
Release :
ISBN-10 : 0521558212
ISBN-13 : 9780521558211
Rating : 4/5 (12 Downloads)

Book Synopsis Classical Invariant Theory by : Peter J. Olver

Download or read book Classical Invariant Theory written by Peter J. Olver and published by Cambridge University Press. This book was released on 1999-01-13 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a self-contained introduction to the results and methods in classical invariant theory.

Exterior Differential Systems

Exterior Differential Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 483
Release :
ISBN-10 : 9781461397144
ISBN-13 : 1461397146
Rating : 4/5 (44 Downloads)

Book Synopsis Exterior Differential Systems by : Robert L. Bryant

Download or read book Exterior Differential Systems written by Robert L. Bryant and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.