Fourier Analysis on Groups

Fourier Analysis on Groups
Author :
Publisher : Courier Dover Publications
Total Pages : 305
Release :
ISBN-10 : 9780486821016
ISBN-13 : 0486821013
Rating : 4/5 (16 Downloads)

Book Synopsis Fourier Analysis on Groups by : Walter Rudin

Download or read book Fourier Analysis on Groups written by Walter Rudin and published by Courier Dover Publications. This book was released on 2017-04-19 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-contained treatment by a master mathematical expositor ranges from introductory chapters on basic theorems of Fourier analysis and structure of locally compact Abelian groups to extensive appendixes on topology, topological groups, more. 1962 edition.

Fourier Analysis on Finite Abelian Groups

Fourier Analysis on Finite Abelian Groups
Author :
Publisher : Springer Science & Business Media
Total Pages : 167
Release :
ISBN-10 : 9780817649166
ISBN-13 : 0817649166
Rating : 4/5 (66 Downloads)

Book Synopsis Fourier Analysis on Finite Abelian Groups by : Bao Luong

Download or read book Fourier Analysis on Finite Abelian Groups written by Bao Luong and published by Springer Science & Business Media. This book was released on 2009-08-14 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unified, self-contained book examines the mathematical tools used for decomposing and analyzing functions, specifically, the application of the [discrete] Fourier transform to finite Abelian groups. With countless examples and unique exercise sets at the end of each section, Fourier Analysis on Finite Abelian Groups is a perfect companion to a first course in Fourier analysis. This text introduces mathematics students to subjects that are within their reach, but it also has powerful applications that may appeal to advanced researchers and mathematicians. The only prerequisites necessary are group theory, linear algebra, and complex analysis.

Fourier Analysis on Finite Groups and Applications

Fourier Analysis on Finite Groups and Applications
Author :
Publisher : Cambridge University Press
Total Pages : 456
Release :
ISBN-10 : 0521457181
ISBN-13 : 9780521457187
Rating : 4/5 (81 Downloads)

Book Synopsis Fourier Analysis on Finite Groups and Applications by : Audrey Terras

Download or read book Fourier Analysis on Finite Groups and Applications written by Audrey Terras and published by Cambridge University Press. This book was released on 1999-03-28 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: It examines the theory of finite groups in a manner that is both accessible to the beginner and suitable for graduate research.

Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design

Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design
Author :
Publisher : John Wiley & Sons
Total Pages : 230
Release :
ISBN-10 : 9780471745426
ISBN-13 : 0471745421
Rating : 4/5 (26 Downloads)

Book Synopsis Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design by : Radomir S. Stankovic

Download or read book Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design written by Radomir S. Stankovic and published by John Wiley & Sons. This book was released on 2005-08-08 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover applications of Fourier analysis on finite non-Abeliangroups The majority of publications in spectral techniques considerFourier transform on Abelian groups. However, non-Abelian groupsprovide notable advantages in efficient implementations of spectralmethods. Fourier Analysis on Finite Groups with Applications in SignalProcessing and System Design examines aspects of Fourieranalysis on finite non-Abelian groups and discusses differentmethods used to determine compact representations for discretefunctions providing for their efficient realizations and relatedapplications. Switching functions are included as an example ofdiscrete functions in engineering practice. Additionally,consideration is given to the polynomial expressions and decisiondiagrams defined in terms of Fourier transform on finitenon-Abelian groups. A solid foundation of this complex topic is provided bybeginning with a review of signals and their mathematical modelsand Fourier analysis. Next, the book examines recent achievementsand discoveries in: Matrix interpretation of the fast Fourier transform Optimization of decision diagrams Functional expressions on quaternion groups Gibbs derivatives on finite groups Linear systems on finite non-Abelian groups Hilbert transform on finite groups Among the highlights is an in-depth coverage of applications ofabstract harmonic analysis on finite non-Abelian groups in compactrepresentations of discrete functions and related tasks in signalprocessing and system design, including logic design. All chaptersare self-contained, each with a list of references to facilitatethe development of specialized courses or self-study. With nearly 100 illustrative figures and fifty tables, this isan excellent textbook for graduate-level students and researchersin signal processing, logic design, and system theory-as well asthe more general topics of computer science and appliedmathematics.

Fourier Analysis on Number Fields

Fourier Analysis on Number Fields
Author :
Publisher : Springer Science & Business Media
Total Pages : 372
Release :
ISBN-10 : 9781475730852
ISBN-13 : 1475730853
Rating : 4/5 (52 Downloads)

Book Synopsis Fourier Analysis on Number Fields by : Dinakar Ramakrishnan

Download or read book Fourier Analysis on Number Fields written by Dinakar Ramakrishnan and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.

Fourier Analysis on Groups

Fourier Analysis on Groups
Author :
Publisher : John Wiley & Sons
Total Pages : 300
Release :
ISBN-10 : 047152364X
ISBN-13 : 9780471523642
Rating : 4/5 (4X Downloads)

Book Synopsis Fourier Analysis on Groups by : Walter Rudin

Download or read book Fourier Analysis on Groups written by Walter Rudin and published by John Wiley & Sons. This book was released on 1991-01-16 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the late 1950s, many of the more refined aspects of Fourier analysis were transferred from their original settings (the unit circle, the integers, the real line) to arbitrary locally compact abelian (LCA) groups. Rudin's book, published in 1962, was the first to give a systematic account of these developments and has come to be regarded as a classic in the field. The basic facts concerning Fourier analysis and the structure of LCA groups are proved in the opening chapters, in order to make the treatment relatively self-contained.

Harmonic Functions on Groups and Fourier Algebras

Harmonic Functions on Groups and Fourier Algebras
Author :
Publisher : Springer
Total Pages : 113
Release :
ISBN-10 : 9783540477938
ISBN-13 : 3540477934
Rating : 4/5 (38 Downloads)

Book Synopsis Harmonic Functions on Groups and Fourier Algebras by : Cho-Ho Chu

Download or read book Harmonic Functions on Groups and Fourier Algebras written by Cho-Ho Chu and published by Springer. This book was released on 2004-10-11 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.