Existence of Unimodular Triangulations–Positive Results
Author | : Christian Haase |
Publisher | : American Mathematical Soc. |
Total Pages | : 83 |
Release | : 2021-07-21 |
ISBN-10 | : 9781470447168 |
ISBN-13 | : 1470447169 |
Rating | : 4/5 (68 Downloads) |
Download or read book Existence of Unimodular Triangulations–Positive Results written by Christian Haase and published by American Mathematical Soc.. This book was released on 2021-07-21 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unimodular triangulations of lattice polytopes arise in algebraic geometry, commutative algebra, integer programming and, of course, combinatorics. In this article, we review several classes of polytopes that do have unimodular triangulations and constructions that preserve their existence. We include, in particular, the first effective proof of the classical result by Knudsen-Mumford-Waterman stating that every lattice polytope has a dilation that admits a unimodular triangulation. Our proof yields an explicit (although doubly exponential) bound for the dilation factor.