Essentials of Metaheuristics (Second Edition)

Essentials of Metaheuristics (Second Edition)
Author :
Publisher :
Total Pages : 242
Release :
ISBN-10 : 1300549629
ISBN-13 : 9781300549628
Rating : 4/5 (29 Downloads)

Book Synopsis Essentials of Metaheuristics (Second Edition) by : Sean Luke

Download or read book Essentials of Metaheuristics (Second Edition) written by Sean Luke and published by . This book was released on 2012-12-20 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interested in the Genetic Algorithm? Simulated Annealing? Ant Colony Optimization? Essentials of Metaheuristics covers these and other metaheuristics algorithms, and is intended for undergraduate students, programmers, and non-experts. The book covers a wide range of algorithms, representations, selection and modification operators, and related topics, and includes 71 figures and 135 algorithms great and small. Algorithms include: Gradient Ascent techniques, Hill-Climbing variants, Simulated Annealing, Tabu Search variants, Iterated Local Search, Evolution Strategies, the Genetic Algorithm, the Steady-State Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, Genetic Programming variants, One- and Two-Population Competitive Coevolution, N-Population Cooperative Coevolution, Implicit Fitness Sharing, Deterministic Crowding, NSGA-II, SPEA2, GRASP, Ant Colony Optimization variants, Guided Local Search, LEM, PBIL, UMDA, cGA, BOA, SAMUEL, ZCS, XCS, and XCSF.

Nature-inspired Metaheuristic Algorithms

Nature-inspired Metaheuristic Algorithms
Author :
Publisher : Luniver Press
Total Pages : 148
Release :
ISBN-10 : 9781905986286
ISBN-13 : 1905986289
Rating : 4/5 (86 Downloads)

Book Synopsis Nature-inspired Metaheuristic Algorithms by : Xin-She Yang

Download or read book Nature-inspired Metaheuristic Algorithms written by Xin-She Yang and published by Luniver Press. This book was released on 2010 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern metaheuristic algorithms such as bee algorithms and harmony search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms. We also briefly introduce the photosynthetic algorithm, the enzyme algorithm, and Tabu search. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course. As some of the algorithms such as the harmony search and firefly algorithms are at the forefront of current research, this book can also serve as a reference book for researchers.

Engineering Optimization

Engineering Optimization
Author :
Publisher : John Wiley & Sons
Total Pages : 377
Release :
ISBN-10 : 9780470640418
ISBN-13 : 0470640413
Rating : 4/5 (18 Downloads)

Book Synopsis Engineering Optimization by : Xin-She Yang

Download or read book Engineering Optimization written by Xin-She Yang and published by John Wiley & Sons. This book was released on 2010-07-20 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLABĀ® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.

Hybrid Metaheuristics

Hybrid Metaheuristics
Author :
Publisher : Springer
Total Pages : 294
Release :
ISBN-10 : 9783540782957
ISBN-13 : 3540782958
Rating : 4/5 (57 Downloads)

Book Synopsis Hybrid Metaheuristics by : Christian Blum

Download or read book Hybrid Metaheuristics written by Christian Blum and published by Springer. This book was released on 2008-06-24 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization problems are of great importance across a broad range of fields. They can be tackled, for example, by approximate algorithms such as metaheuristics. This book is intended both to provide an overview of hybrid metaheuristics to novices of the field, and to provide researchers from the field with a collection of some of the most interesting recent developments. The authors involved in this book are among the top researchers in their domain.

Metaheuristics

Metaheuristics
Author :
Publisher : John Wiley & Sons
Total Pages : 625
Release :
ISBN-10 : 9780470496909
ISBN-13 : 0470496908
Rating : 4/5 (09 Downloads)

Book Synopsis Metaheuristics by : El-Ghazali Talbi

Download or read book Metaheuristics written by El-Ghazali Talbi and published by John Wiley & Sons. This book was released on 2009-05-27 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.

Handbook of Approximation Algorithms and Metaheuristics, Second Edition

Handbook of Approximation Algorithms and Metaheuristics, Second Edition
Author :
Publisher : Chapman & Hall/CRC
Total Pages : 1612
Release :
ISBN-10 : 1498770150
ISBN-13 : 9781498770156
Rating : 4/5 (50 Downloads)

Book Synopsis Handbook of Approximation Algorithms and Metaheuristics, Second Edition by : Teofilo F. Gonzalez

Download or read book Handbook of Approximation Algorithms and Metaheuristics, Second Edition written by Teofilo F. Gonzalez and published by Chapman & Hall/CRC. This book was released on 2018-05-23 with total page 1612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of scheduling, graph, computational geometry, communication, routing, etc.

Machine Learning Refined

Machine Learning Refined
Author :
Publisher : Cambridge University Press
Total Pages : 597
Release :
ISBN-10 : 9781108480727
ISBN-13 : 1108480721
Rating : 4/5 (27 Downloads)

Book Synopsis Machine Learning Refined by : Jeremy Watt

Download or read book Machine Learning Refined written by Jeremy Watt and published by Cambridge University Press. This book was released on 2020-01-09 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.