Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces

Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces
Author :
Publisher : Cambridge University Press
Total Pages : 214
Release :
ISBN-10 : 0521660300
ISBN-13 : 9780521660303
Rating : 4/5 (00 Downloads)

Book Synopsis Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces by : M. Bachir Bekka

Download or read book Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces written by M. Bachir Bekka and published by Cambridge University Press. This book was released on 2000-05-11 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2000, focuses on developments in the study of geodesic flows on homogenous spaces.

Operator Theoretic Aspects of Ergodic Theory

Operator Theoretic Aspects of Ergodic Theory
Author :
Publisher : Springer
Total Pages : 630
Release :
ISBN-10 : 9783319168982
ISBN-13 : 3319168983
Rating : 4/5 (82 Downloads)

Book Synopsis Operator Theoretic Aspects of Ergodic Theory by : Tanja Eisner

Download or read book Operator Theoretic Aspects of Ergodic Theory written by Tanja Eisner and published by Springer. This book was released on 2015-11-18 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory

Ergodic Theory

Ergodic Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 486
Release :
ISBN-10 : 9780857290212
ISBN-13 : 0857290215
Rating : 4/5 (12 Downloads)

Book Synopsis Ergodic Theory by : Manfred Einsiedler

Download or read book Ergodic Theory written by Manfred Einsiedler and published by Springer Science & Business Media. This book was released on 2010-09-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

Ergodic Theory via Joinings

Ergodic Theory via Joinings
Author :
Publisher : American Mathematical Soc.
Total Pages : 402
Release :
ISBN-10 : 9781470419516
ISBN-13 : 1470419513
Rating : 4/5 (16 Downloads)

Book Synopsis Ergodic Theory via Joinings by : Eli Glasner

Download or read book Ergodic Theory via Joinings written by Eli Glasner and published by American Mathematical Soc.. This book was released on 2015-01-09 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces modern ergodic theory. It emphasizes a new approach that relies on the technique of joining two (or more) dynamical systems. This approach has proved to be fruitful in many recent works, and this is the first time that the entire theory is presented from a joining perspective. Another new feature of the book is the presentation of basic definitions of ergodic theory in terms of the Koopman unitary representation associated with a dynamical system and the invariant mean on matrix coefficients, which exists for any acting groups, amenable or not. Accordingly, the first part of the book treats the ergodic theory for an action of an arbitrary countable group. The second part, which deals with entropy theory, is confined (for the sake of simplicity) to the classical case of a single measure-preserving transformation on a Lebesgue probability space.

Self-Similar Groups

Self-Similar Groups
Author :
Publisher : American Mathematical Soc.
Total Pages : 248
Release :
ISBN-10 : 9780821838310
ISBN-13 : 0821838318
Rating : 4/5 (10 Downloads)

Book Synopsis Self-Similar Groups by : Volodymyr Nekrashevych

Download or read book Self-Similar Groups written by Volodymyr Nekrashevych and published by American Mathematical Soc.. This book was released on 2005 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-similar groups (groups generated by automata) initially appeared as examples of groups that are easy to define but have exotic properties like nontrivial torsion, intermediate growth, etc. This book studies the self-similarity phenomenon in group theory and shows its intimate relationship with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. This connection is established through the central topics of the book, which are the notions of the iterated monodromy group and limit space. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. In particular, it is shown that Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties can appear not just as isolated examples, but as naturally defined iterated monodromy groups of rational functions. The book offers important, new mathematics that will open new avenues of research in group theory and dynamical systems. It is intended to be accessible to a wide readership of professional mathematicians.

Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations

Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations
Author :
Publisher : American Mathematical Soc.
Total Pages : 126
Release :
ISBN-10 : 9780821837719
ISBN-13 : 0821837710
Rating : 4/5 (19 Downloads)

Book Synopsis Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations by : Greg Hjorth

Download or read book Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations written by Greg Hjorth and published by American Mathematical Soc.. This book was released on 2005 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contributes to the theory of Borel equivalence relations, considered up to Borel reducibility, and measures preserving group actions considered up to orbit equivalence. This title catalogs the actions of products of the free group and obtains additional rigidity theorems and relative ergodicity results in this context.

Handbook of Group Actions

Handbook of Group Actions
Author :
Publisher :
Total Pages : 547
Release :
ISBN-10 : 7040498456
ISBN-13 : 9787040498455
Rating : 4/5 (56 Downloads)

Book Synopsis Handbook of Group Actions by : 季理真

Download or read book Handbook of Group Actions written by 季理真 and published by . This book was released on 2018 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: