Elementary Methods in Number Theory

Elementary Methods in Number Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 518
Release :
ISBN-10 : 9780387989129
ISBN-13 : 0387989129
Rating : 4/5 (29 Downloads)

Book Synopsis Elementary Methods in Number Theory by : Melvyn B. Nathanson

Download or read book Elementary Methods in Number Theory written by Melvyn B. Nathanson and published by Springer Science & Business Media. This book was released on 2000 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.

Not Always Buried Deep

Not Always Buried Deep
Author :
Publisher : American Mathematical Soc.
Total Pages : 322
Release :
ISBN-10 : 9780821848807
ISBN-13 : 0821848801
Rating : 4/5 (07 Downloads)

Book Synopsis Not Always Buried Deep by : Paul Pollack

Download or read book Not Always Buried Deep written by Paul Pollack and published by American Mathematical Soc.. This book was released on 2009-10-14 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number theory is one of the few areas of mathematics where problems of substantial interest can be fully described to someone with minimal mathematical background. Solving such problems sometimes requires difficult and deep methods. But this is not a universal phenomenon; many engaging problems can be successfully attacked with little more than one's mathematical bare hands. In this case one says that the problem can be solved in an elementary way. Such elementary methods and the problems to which they apply are the subject of this book. Not Always Buried Deep is designed to be read and enjoyed by those who wish to explore elementary methods in modern number theory. The heart of the book is a thorough introduction to elementary prime number theory, including Dirichlet's theorem on primes in arithmetic progressions, the Brun sieve, and the Erdos-Selberg proof of the prime number theorem. Rather than trying to present a comprehensive treatise, Pollack focuses on topics that are particularly attractive and accessible. Other topics covered include Gauss's theory of cyclotomy and its applications to rational reciprocity laws, Hilbert's solution to Waring's problem, and modern work on perfect numbers. The nature of the material means that little is required in terms of prerequisites: The reader is expected to have prior familiarity with number theory at the level of an undergraduate course and a first course in modern algebra (covering groups, rings, and fields). The exposition is complemented by over 200 exercises and 400 references.

Number Theory for Elementary School Teachers

Number Theory for Elementary School Teachers
Author :
Publisher : McGraw-Hill Humanities/Social Sciences/Languages
Total Pages : 0
Release :
ISBN-10 : 007337847X
ISBN-13 : 9780073378473
Rating : 4/5 (7X Downloads)

Book Synopsis Number Theory for Elementary School Teachers by : Edward Wall

Download or read book Number Theory for Elementary School Teachers written by Edward Wall and published by McGraw-Hill Humanities/Social Sciences/Languages. This book was released on 2009-02-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to concerns about teacher retention, especially among teachers in their first to fourth year in the classroom, we offer future teachers a series of brief guides full of practical advice that they can refer to in both their student teaching and in their first years on the job. Number Theory for Elementary School Teachers is designed for preservice candidates in early and/or elementary education. The text complements traditional Math Methods courses and provides deep content knowledge for prospective and first year teachers.

Elementary Introduction to Number Theory

Elementary Introduction to Number Theory
Author :
Publisher : D.C. Heath
Total Pages : 264
Release :
ISBN-10 : CORNELL:31924001582521
ISBN-13 :
Rating : 4/5 (21 Downloads)

Book Synopsis Elementary Introduction to Number Theory by : Calvin T. Long

Download or read book Elementary Introduction to Number Theory written by Calvin T. Long and published by D.C. Heath. This book was released on 1972 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Elementary Number Theory: Primes, Congruences, and Secrets

Elementary Number Theory: Primes, Congruences, and Secrets
Author :
Publisher : Springer Science & Business Media
Total Pages : 173
Release :
ISBN-10 : 9780387855257
ISBN-13 : 0387855254
Rating : 4/5 (57 Downloads)

Book Synopsis Elementary Number Theory: Primes, Congruences, and Secrets by : William Stein

Download or read book Elementary Number Theory: Primes, Congruences, and Secrets written by William Stein and published by Springer Science & Business Media. This book was released on 2008-10-28 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.

Methods of Solving Number Theory Problems

Methods of Solving Number Theory Problems
Author :
Publisher : Birkhäuser
Total Pages : 405
Release :
ISBN-10 : 9783319909158
ISBN-13 : 3319909150
Rating : 4/5 (58 Downloads)

Book Synopsis Methods of Solving Number Theory Problems by : Ellina Grigorieva

Download or read book Methods of Solving Number Theory Problems written by Ellina Grigorieva and published by Birkhäuser. This book was released on 2018-07-06 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through its engaging and unusual problems, this book demonstrates methods of reasoning necessary for learning number theory. Every technique is followed by problems (as well as detailed hints and solutions) that apply theorems immediately, so readers can solve a variety of abstract problems in a systematic, creative manner. New solutions often require the ingenious use of earlier mathematical concepts - not the memorization of formulas and facts. Questions also often permit experimental numeric validation or visual interpretation to encourage the combined use of deductive and intuitive thinking. The first chapter starts with simple topics like even and odd numbers, divisibility, and prime numbers and helps the reader to solve quite complex, Olympiad-type problems right away. It also covers properties of the perfect, amicable, and figurate numbers and introduces congruence. The next chapter begins with the Euclidean algorithm, explores the representations of integer numbers in different bases, and examines continued fractions, quadratic irrationalities, and the Lagrange Theorem. The last section of Chapter Two is an exploration of different methods of proofs. The third chapter is dedicated to solving Diophantine linear and nonlinear equations and includes different methods of solving Fermat’s (Pell’s) equations. It also covers Fermat’s factorization techniques and methods of solving challenging problems involving exponent and factorials. Chapter Four reviews the Pythagorean triple and quadruple and emphasizes their connection with geometry, trigonometry, algebraic geometry, and stereographic projection. A special case of Waring’s problem as a representation of a number by the sum of the squares or cubes of other numbers is covered, as well as quadratic residuals, Legendre and Jacobi symbols, and interesting word problems related to the properties of numbers. Appendices provide a historic overview of number theory and its main developments from the ancient cultures in Greece, Babylon, and Egypt to the modern day. Drawing from cases collected by an accomplished female mathematician, Methods in Solving Number Theory Problems is designed as a self-study guide or supplementary textbook for a one-semester course in introductory number theory. It can also be used to prepare for mathematical Olympiads. Elementary algebra, arithmetic and some calculus knowledge are the only prerequisites. Number theory gives precise proofs and theorems of an irreproachable rigor and sharpens analytical thinking, which makes this book perfect for anyone looking to build their mathematical confidence.

Elementary Number Theory

Elementary Number Theory
Author :
Publisher : American Mathematical Society
Total Pages : 256
Release :
ISBN-10 : 9781470463250
ISBN-13 : 1470463253
Rating : 4/5 (50 Downloads)

Book Synopsis Elementary Number Theory by : Edmund Landau

Download or read book Elementary Number Theory written by Edmund Landau and published by American Mathematical Society. This book was released on 2021-02-22 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume classic work is reprinted here as a single volume.