Educational Data Mining with R and Rattle

Educational Data Mining with R and Rattle
Author :
Publisher : River Publishers
Total Pages : 127
Release :
ISBN-10 : 9788793379312
ISBN-13 : 8793379315
Rating : 4/5 (12 Downloads)

Book Synopsis Educational Data Mining with R and Rattle by : R. S. Kamath

Download or read book Educational Data Mining with R and Rattle written by R. S. Kamath and published by River Publishers. This book was released on 2016 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: It includes the transformation of existing, and the innovation of new approaches derived from multidisciplinary spheres of influence such as statistics, machine learning, psychometrics, scientific computing etc.An archetype that is covered in this book is that of learning by example.

Data Mining with Rattle and R

Data Mining with Rattle and R
Author :
Publisher : Springer Science & Business Media
Total Pages : 382
Release :
ISBN-10 : 9781441998903
ISBN-13 : 144199890X
Rating : 4/5 (03 Downloads)

Book Synopsis Data Mining with Rattle and R by : Graham Williams

Download or read book Data Mining with Rattle and R written by Graham Williams and published by Springer Science & Business Media. This book was released on 2011-08-04 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.

Educational Data Mining with R and Rattle

Educational Data Mining with R and Rattle
Author :
Publisher : CRC Press
Total Pages : 127
Release :
ISBN-10 : 9781000793635
ISBN-13 : 100079363X
Rating : 4/5 (35 Downloads)

Book Synopsis Educational Data Mining with R and Rattle by : R.S. Kamath

Download or read book Educational Data Mining with R and Rattle written by R.S. Kamath and published by CRC Press. This book was released on 2022-09-01 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Educational Data Mining (EDM) is one of the emerging fields in the pedagogy and andragogy paradigm, it concerns the techniques which research data coming from the educational domain. EDM is a promising discipline which has an imperative impact on predicting students' academic performance. It includes the transformation of existing, and the innovation of new approaches derived from multidisciplinary spheres of influence such as statistics, machine learning, psychometrics, scientific computing etc.An archetype that is covered in this book is that of learning by example. The intention is that reader will easily be able to replicate the given examples and then adapt them to suit their own needs of teaching-learning. The content of the book is based on the research work undertaken by the authors on the theme "Mining of Educational Data for the Analysis and Prediction of Students' Academic Performance". The basic know-how presented in this book can be treated as guide for educational data mining implementation using R and Rattle open source data mining tools. .Technical topics discussed in the book include:• Emerging Research Directions in Educational Data Mining• Design Aspects and Developmental Framework of the System• Model Development - Building Classifiers• Educational Data Analysis: Clustering Approach

R and Data Mining

R and Data Mining
Author :
Publisher : Academic Press
Total Pages : 251
Release :
ISBN-10 : 9780123972712
ISBN-13 : 012397271X
Rating : 4/5 (12 Downloads)

Book Synopsis R and Data Mining by : Yanchang Zhao

Download or read book R and Data Mining written by Yanchang Zhao and published by Academic Press. This book was released on 2012-12-31 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more.Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation.With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. - Presents an introduction into using R for data mining applications, covering most popular data mining techniques - Provides code examples and data so that readers can easily learn the techniques - Features case studies in real-world applications to help readers apply the techniques in their work

Learning R

Learning R
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 250
Release :
ISBN-10 : 9781449357184
ISBN-13 : 1449357180
Rating : 4/5 (84 Downloads)

Book Synopsis Learning R by : Richard Cotton

Download or read book Learning R written by Richard Cotton and published by "O'Reilly Media, Inc.". This book was released on 2013-09-09 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to perform data analysis with the R language and software environment, even if you have little or no programming experience. With the tutorials in this hands-on guide, youâ??ll learn how to use the essential R tools you need to know to analyze data, including data types and programming concepts. The second half of Learning R shows you real data analysis in action by covering everything from importing data to publishing your results. Each chapter in the book includes a quiz on what youâ??ve learned, and concludes with exercises, most of which involve writing R code. Write a simple R program, and discover what the language can do Use data types such as vectors, arrays, lists, data frames, and strings Execute code conditionally or repeatedly with branches and loops Apply R add-on packages, and package your own work for others Learn how to clean data you import from a variety of sources Understand data through visualization and summary statistics Use statistical models to pass quantitative judgments about data and make predictions Learn what to do when things go wrong while writing data analysis code

Data Mining

Data Mining
Author :
Publisher : Elsevier
Total Pages : 665
Release :
ISBN-10 : 9780080890364
ISBN-13 : 0080890369
Rating : 4/5 (64 Downloads)

Book Synopsis Data Mining by : Ian H. Witten

Download or read book Data Mining written by Ian H. Witten and published by Elsevier. This book was released on 2011-02-03 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Data Mining and Business Analytics with R

Data Mining and Business Analytics with R
Author :
Publisher : John Wiley & Sons
Total Pages : 304
Release :
ISBN-10 : 9781118572153
ISBN-13 : 1118572157
Rating : 4/5 (53 Downloads)

Book Synopsis Data Mining and Business Analytics with R by : Johannes Ledolter

Download or read book Data Mining and Business Analytics with R written by Johannes Ledolter and published by John Wiley & Sons. This book was released on 2013-05-28 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.