Dynamical Systems and Evolution Equations

Dynamical Systems and Evolution Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 244
Release :
ISBN-10 : 9781468410365
ISBN-13 : 1468410369
Rating : 4/5 (65 Downloads)

Book Synopsis Dynamical Systems and Evolution Equations by : John A. Walker

Download or read book Dynamical Systems and Evolution Equations written by John A. Walker and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.

A Stability Technique for Evolution Partial Differential Equations

A Stability Technique for Evolution Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 388
Release :
ISBN-10 : 9781461220503
ISBN-13 : 1461220505
Rating : 4/5 (03 Downloads)

Book Synopsis A Stability Technique for Evolution Partial Differential Equations by : Victor A. Galaktionov

Download or read book A Stability Technique for Evolution Partial Differential Equations written by Victor A. Galaktionov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.

Evolution Equations

Evolution Equations
Author :
Publisher : Cambridge University Press
Total Pages : 205
Release :
ISBN-10 : 9781108412308
ISBN-13 : 1108412300
Rating : 4/5 (08 Downloads)

Book Synopsis Evolution Equations by : Kaïs Ammari

Download or read book Evolution Equations written by Kaïs Ammari and published by Cambridge University Press. This book was released on 2018 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of a summer school held in 2015 whose theme was long time behavior and control of evolution equations.

Differential Dynamical Systems, Revised Edition

Differential Dynamical Systems, Revised Edition
Author :
Publisher : SIAM
Total Pages : 410
Release :
ISBN-10 : 9781611974645
ISBN-13 : 161197464X
Rating : 4/5 (45 Downloads)

Book Synopsis Differential Dynamical Systems, Revised Edition by : James D. Meiss

Download or read book Differential Dynamical Systems, Revised Edition written by James D. Meiss and published by SIAM. This book was released on 2017-01-24 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.

Evolutionary Dynamics

Evolutionary Dynamics
Author :
Publisher : Harvard University Press
Total Pages : 390
Release :
ISBN-10 : 9780674417755
ISBN-13 : 0674417755
Rating : 4/5 (55 Downloads)

Book Synopsis Evolutionary Dynamics by : Martin A. Nowak

Download or read book Evolutionary Dynamics written by Martin A. Nowak and published by Harvard University Press. This book was released on 2006-09-29 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: At a time of unprecedented expansion in the life sciences, evolution is the one theory that transcends all of biology. Any observation of a living system must ultimately be interpreted in the context of its evolution. Evolutionary change is the consequence of mutation and natural selection, which are two concepts that can be described by mathematical equations. Evolutionary Dynamics is concerned with these equations of life. In this book, Martin A. Nowak draws on the languages of biology and mathematics to outline the mathematical principles according to which life evolves. His work introduces readers to the powerful yet simple laws that govern the evolution of living systems, no matter how complicated they might seem. Evolution has become a mathematical theory, Nowak suggests, and any idea of an evolutionary process or mechanism should be studied in the context of the mathematical equations of evolutionary dynamics. His book presents a range of analytical tools that can be used to this end: fitness landscapes, mutation matrices, genomic sequence space, random drift, quasispecies, replicators, the Prisoner’s Dilemma, games in finite and infinite populations, evolutionary graph theory, games on grids, evolutionary kaleidoscopes, fractals, and spatial chaos. Nowak then shows how evolutionary dynamics applies to critical real-world problems, including the progression of viral diseases such as AIDS, the virulence of infectious agents, the unpredictable mutations that lead to cancer, the evolution of altruism, and even the evolution of human language. His book makes a clear and compelling case for understanding every living system—and everything that arises as a consequence of living systems—in terms of evolutionary dynamics.

Dynamics of Evolutionary Equations

Dynamics of Evolutionary Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 680
Release :
ISBN-10 : 9781475750379
ISBN-13 : 1475750374
Rating : 4/5 (79 Downloads)

Book Synopsis Dynamics of Evolutionary Equations by : George R. Sell

Download or read book Dynamics of Evolutionary Equations written by George R. Sell and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. This book serves as an entrée for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations.

Abstract Parabolic Evolution Equations and their Applications

Abstract Parabolic Evolution Equations and their Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 594
Release :
ISBN-10 : 9783642046315
ISBN-13 : 3642046312
Rating : 4/5 (15 Downloads)

Book Synopsis Abstract Parabolic Evolution Equations and their Applications by : Atsushi Yagi

Download or read book Abstract Parabolic Evolution Equations and their Applications written by Atsushi Yagi and published by Springer Science & Business Media. This book was released on 2009-11-03 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0