Derivatives Analytics with Python

Derivatives Analytics with Python
Author :
Publisher : John Wiley & Sons
Total Pages : 390
Release :
ISBN-10 : 9781119037996
ISBN-13 : 1119037999
Rating : 4/5 (96 Downloads)

Book Synopsis Derivatives Analytics with Python by : Yves Hilpisch

Download or read book Derivatives Analytics with Python written by Yves Hilpisch and published by John Wiley & Sons. This book was released on 2015-08-03 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercharge options analytics and hedging using the power of Python Derivatives Analytics with Python shows you how to implement market-consistent valuation and hedging approaches using advanced financial models, efficient numerical techniques, and the powerful capabilities of the Python programming language. This unique guide offers detailed explanations of all theory, methods, and processes, giving you the background and tools necessary to value stock index options from a sound foundation. You'll find and use self-contained Python scripts and modules and learn how to apply Python to advanced data and derivatives analytics as you benefit from the 5,000+ lines of code that are provided to help you reproduce the results and graphics presented. Coverage includes market data analysis, risk-neutral valuation, Monte Carlo simulation, model calibration, valuation, and dynamic hedging, with models that exhibit stochastic volatility, jump components, stochastic short rates, and more. The companion website features all code and IPython Notebooks for immediate execution and automation. Python is gaining ground in the derivatives analytics space, allowing institutions to quickly and efficiently deliver portfolio, trading, and risk management results. This book is the finance professional's guide to exploiting Python's capabilities for efficient and performing derivatives analytics. Reproduce major stylized facts of equity and options markets yourself Apply Fourier transform techniques and advanced Monte Carlo pricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamically hedge options Recent developments in the Python ecosystem enable analysts to implement analytics tasks as performing as with C or C++, but using only about one-tenth of the code or even less. Derivatives Analytics with Python — Data Analysis, Models, Simulation, Calibration and Hedging shows you what you need to know to supercharge your derivatives and risk analytics efforts.

Python for Finance

Python for Finance
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 682
Release :
ISBN-10 : 9781492024293
ISBN-13 : 1492024295
Rating : 4/5 (93 Downloads)

Book Synopsis Python for Finance by : Yves J. Hilpisch

Download or read book Python for Finance written by Yves J. Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2018-12-05 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.

Listed Volatility and Variance Derivatives

Listed Volatility and Variance Derivatives
Author :
Publisher : John Wiley & Sons
Total Pages : 398
Release :
ISBN-10 : 9781119167938
ISBN-13 : 1119167930
Rating : 4/5 (38 Downloads)

Book Synopsis Listed Volatility and Variance Derivatives by : Yves Hilpisch

Download or read book Listed Volatility and Variance Derivatives written by Yves Hilpisch and published by John Wiley & Sons. This book was released on 2016-11-10 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage Python for expert-level volatility and variance derivative trading Listed Volatility and Variance Derivatives is a comprehensive treatment of all aspects of these increasingly popular derivatives products, and has the distinction of being both the first to cover European volatility and variance products provided by Eurex and the first to offer Python code for implementing comprehensive quantitative analyses of these financial products. For those who want to get started right away, the book is accompanied by a dedicated Web page and a Github repository that includes all the code from the book for easy replication and use, as well as a hosted version of all the code for immediate execution. Python is fast making inroads into financial modelling and derivatives analytics, and recent developments allow Python to be as fast as pure C++ or C while consisting generally of only 10% of the code lines associated with the compiled languages. This complete guide offers rare insight into the use of Python to undertake complex quantitative analyses of listed volatility and variance derivatives. Learn how to use Python for data and financial analysis, and reproduce stylised facts on volatility and variance markets Gain an understanding of the fundamental techniques of modelling volatility and variance and the model-free replication of variance Familiarise yourself with micro structure elements of the markets for listed volatility and variance derivatives Reproduce all results and graphics with IPython/Jupyter Notebooks and Python codes that accompany the book Listed Volatility and Variance Derivatives is the complete guide to Python-based quantitative analysis of these Eurex derivatives products.

Python for Finance

Python for Finance
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 750
Release :
ISBN-10 : 9781491945384
ISBN-13 : 1491945389
Rating : 4/5 (84 Downloads)

Book Synopsis Python for Finance by : Yves Hilpisch

Download or read book Python for Finance written by Yves Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2014-12-11 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance. Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include: Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practices Financial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regression Special topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies

Python for Algorithmic Trading

Python for Algorithmic Trading
Author :
Publisher : O'Reilly Media
Total Pages : 380
Release :
ISBN-10 : 9781492053323
ISBN-13 : 1492053325
Rating : 4/5 (23 Downloads)

Book Synopsis Python for Algorithmic Trading by : Yves Hilpisch

Download or read book Python for Algorithmic Trading written by Yves Hilpisch and published by O'Reilly Media. This book was released on 2020-11-12 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms

Artificial Intelligence in Finance

Artificial Intelligence in Finance
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 478
Release :
ISBN-10 : 9781492055389
ISBN-13 : 1492055387
Rating : 4/5 (89 Downloads)

Book Synopsis Artificial Intelligence in Finance by : Yves Hilpisch

Download or read book Artificial Intelligence in Finance written by Yves Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2020-10-14 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: The widespread adoption of AI and machine learning is revolutionizing many industries today. Once these technologies are combined with the programmatic availability of historical and real-time financial data, the financial industry will also change fundamentally. With this practical book, you'll learn how to use AI and machine learning to discover statistical inefficiencies in financial markets and exploit them through algorithmic trading. Author Yves Hilpisch shows practitioners, students, and academics in both finance and data science practical ways to apply machine learning and deep learning algorithms to finance. Thanks to lots of self-contained Python examples, you'll be able to replicate all results and figures presented in the book. In five parts, this guide helps you: Learn central notions and algorithms from AI, including recent breakthroughs on the way to artificial general intelligence (AGI) and superintelligence (SI) Understand why data-driven finance, AI, and machine learning will have a lasting impact on financial theory and practice Apply neural networks and reinforcement learning to discover statistical inefficiencies in financial markets Identify and exploit economic inefficiencies through backtesting and algorithmic trading--the automated execution of trading strategies Understand how AI will influence the competitive dynamics in the financial industry and what the potential emergence of a financial singularity might bring about

Mastering Python for Finance

Mastering Python for Finance
Author :
Publisher : Packt Publishing Ltd
Total Pages : 340
Release :
ISBN-10 : 9781784397876
ISBN-13 : 1784397873
Rating : 4/5 (76 Downloads)

Book Synopsis Mastering Python for Finance by : James Ma Weiming

Download or read book Mastering Python for Finance written by James Ma Weiming and published by Packt Publishing Ltd. This book was released on 2015-04-29 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you are an undergraduate or graduate student, a beginner to algorithmic development and research, or a software developer in the financial industry who is interested in using Python for quantitative methods in finance, this is the book for you. It would be helpful to have a bit of familiarity with basic Python usage, but no prior experience is required.