Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Deep Learning Techniques and Optimization Strategies in Big Data Analytics
Author :
Publisher : IGI Global
Total Pages : 355
Release :
ISBN-10 : 9781799811947
ISBN-13 : 1799811948
Rating : 4/5 (47 Downloads)

Book Synopsis Deep Learning Techniques and Optimization Strategies in Big Data Analytics by : Thomas, J. Joshua

Download or read book Deep Learning Techniques and Optimization Strategies in Big Data Analytics written by Thomas, J. Joshua and published by IGI Global. This book was released on 2019-11-29 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.

Machine Learning Techniques for Improved Business Analytics

Machine Learning Techniques for Improved Business Analytics
Author :
Publisher : IGI Global
Total Pages : 300
Release :
ISBN-10 : 9781522535355
ISBN-13 : 1522535357
Rating : 4/5 (55 Downloads)

Book Synopsis Machine Learning Techniques for Improved Business Analytics by : G., Dileep Kumar

Download or read book Machine Learning Techniques for Improved Business Analytics written by G., Dileep Kumar and published by IGI Global. This book was released on 2018-07-06 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical tools and algorithms are essential in business data and information systems. Efficient economic and financial forecasting in machine learning techniques increases gains while reducing risks. Providing research on predictive models with high accuracy, stability, and ease of interpretation is important in improving data preparation, analysis, and implementation processes in business organizations. Machine Learning Techniques for Improved Business Analytics is a collection of innovative research on the methods and applications of artificial intelligence in strategic business decisions and management. Featuring coverage on a broad range of topics such as data mining, portfolio optimization, and social network analysis, this book is ideally designed for business managers and practitioners, upper-level business students, and researchers seeking current research on large-scale information control and evaluation technologies that exceed the functionality of conventional data processing techniques.

Managerial Perspectives on Intelligent Big Data Analytics

Managerial Perspectives on Intelligent Big Data Analytics
Author :
Publisher : IGI Global
Total Pages : 357
Release :
ISBN-10 : 9781522572787
ISBN-13 : 1522572783
Rating : 4/5 (87 Downloads)

Book Synopsis Managerial Perspectives on Intelligent Big Data Analytics by : Sun, Zhaohao

Download or read book Managerial Perspectives on Intelligent Big Data Analytics written by Sun, Zhaohao and published by IGI Global. This book was released on 2019-02-22 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data, analytics, and artificial intelligence are revolutionizing work, management, and lifestyles and are becoming disruptive technologies for healthcare, e-commerce, and web services. However, many fundamental, technological, and managerial issues for developing and applying intelligent big data analytics in these fields have yet to be addressed. Managerial Perspectives on Intelligent Big Data Analytics is a collection of innovative research that discusses the integration and application of artificial intelligence, business intelligence, digital transformation, and intelligent big data analytics from a perspective of computing, service, and management. While highlighting topics including e-commerce, machine learning, and fuzzy logic, this book is ideally designed for students, government officials, data scientists, managers, consultants, analysts, IT specialists, academicians, researchers, and industry professionals in fields that include big data, artificial intelligence, computing, and commerce.

Big Data Technologies and Applications

Big Data Technologies and Applications
Author :
Publisher : Springer
Total Pages : 405
Release :
ISBN-10 : 9783319445502
ISBN-13 : 3319445502
Rating : 4/5 (02 Downloads)

Book Synopsis Big Data Technologies and Applications by : Borko Furht

Download or read book Big Data Technologies and Applications written by Borko Furht and published by Springer. This book was released on 2016-09-16 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.

Optimizing Data and New Methods for Efficient Knowledge Discovery and Information Resources Management: Emerging Research and Opportunities

Optimizing Data and New Methods for Efficient Knowledge Discovery and Information Resources Management: Emerging Research and Opportunities
Author :
Publisher : IGI Global
Total Pages : 198
Release :
ISBN-10 : 9781799822370
ISBN-13 : 1799822370
Rating : 4/5 (70 Downloads)

Book Synopsis Optimizing Data and New Methods for Efficient Knowledge Discovery and Information Resources Management: Emerging Research and Opportunities by : Swayze, Susan

Download or read book Optimizing Data and New Methods for Efficient Knowledge Discovery and Information Resources Management: Emerging Research and Opportunities written by Swayze, Susan and published by IGI Global. This book was released on 2020-06-26 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fast-paced world created by the accessibility of consumer information through internet-generated data requires improved information-management platforms. The continuous evaluation and evolution of these systems facilitate enhanced data reference and output. Optimizing Data and New Methods for Efficient Knowledge Discovery and Information Resources Management is a critical research publication that provides insight into the varied and rapidly changing fields of knowledge discovery and information resource management. Highlighting a range of topics such as datamining, artificial intelligence, and risk assessment, this book is essential for librarians, academicians, policymakers, information managers, professionals, and researchers in fields that include artificial intelligence, knowledge discovery, data visualization, big data, and information resources management.

Big Data Analytics Methods

Big Data Analytics Methods
Author :
Publisher : Createspace Independent Publishing Platform
Total Pages : 304
Release :
ISBN-10 : 1530414830
ISBN-13 : 9781530414833
Rating : 4/5 (30 Downloads)

Book Synopsis Big Data Analytics Methods by : Peter Ghavami

Download or read book Big Data Analytics Methods written by Peter Ghavami and published by Createspace Independent Publishing Platform. This book was released on 2016-03-06 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensemble of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods are covered. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. This book is ideal as a text book for a course or as a reference for data scientists, data engineers, data analysts, Business intelligence practitioners, and business managers. It covers 10 chapters that discuss natural language processing (NLP), data visualization, prediction, optimization, artificial intelligence, regression analysis, cox hazard model and many analytics use case examples with applications in healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services. Big Data Analytics Methods Is a must read for those who wish to gain confidence and knowledge about big data and advanced analytics techniques. Read this book and confidently speak, lead and guide others about machine learning, neural networks, NLP, deep learning, and over 100 other analytics techniques. This book is fun and easy to read. It starts with simple and broad explanation of methods and gradually introduces more technical terms and techniques layer by layer. It finally introduces the underlying mathematical terms for those who want a mathematical foundation of the analytics methods. This book is one of a kind as it provides state of the art in advanced data analytics methods with important best practices to ensure the reader's success in data analytics.

Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms

Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms
Author :
Publisher : IGI Global
Total Pages : 296
Release :
ISBN-10 : 9781799883524
ISBN-13 : 1799883523
Rating : 4/5 (24 Downloads)

Book Synopsis Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms by : Milutinovi?, Veljko

Download or read book Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms written by Milutinovi?, Veljko and published by IGI Global. This book was released on 2022-03-11 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on current literature and cutting-edge advances in the machine learning field, there are four algorithms whose usage in new application domains must be explored: neural networks, rule induction algorithms, tree-based algorithms, and density-based algorithms. A number of machine learning related algorithms have been derived from these four algorithms. Consequently, they represent excellent underlying methods for extracting hidden knowledge from unstructured data, as essential data mining tasks. Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms presents widely used data-mining algorithms and explains their advantages and disadvantages, their mathematical treatment, applications, energy efficient implementations, and more. It presents research of energy efficient accelerators for machine learning algorithms. Covering topics such as control-flow implementation, approximate computing, and decision tree algorithms, this book is an essential resource for computer scientists, engineers, students and educators of higher education, researchers, and academicians.