Deep Learning for Marine Science

Deep Learning for Marine Science
Author :
Publisher : Frontiers Media SA
Total Pages : 555
Release :
ISBN-10 : 9782832549056
ISBN-13 : 2832549055
Rating : 4/5 (56 Downloads)

Book Synopsis Deep Learning for Marine Science by : Haiyong Zheng

Download or read book Deep Learning for Marine Science written by Haiyong Zheng and published by Frontiers Media SA. This book was released on 2024-05-15 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning (DL), mainly composed of deep and complex neural networks such as recurrent network and convolutional network, is an emerging research branch in the field of artificial intelligence and machine learning. DL revolution has a far-reaching impact on all scientific disciplines and every corner of our lives. With continuing technological advances, marine science is entering into the big data era with the exponential growth of information. DL is an effective means of harnessing the power of big data. Combined with unprecedented data from cameras, acoustic recorders, satellite remote sensing, and large model outputs, DL enables scientists to solve complex problems in biology, ecosystems, climate, energy, as well as physical and chemical interactions. Although DL has made great strides, it is still only beginning to emerge in many fields of marine science, especially towards representative applications and best practices for the automatic analysis of marine organisms and marine environments. DL in nowadays' marine science mainly leverages cutting-edge techniques of deep neural networks and massive data which collected by in-situ optical or acoustic imaging sensors for underwater applications, such as plankton classification and coral reef detection. This research topic aims to expand the applications of marine science to cover all aspects of detection, classification, segmentation, localization, and density estimation of marine objects, organisms, and phenomena.

Advanced Concepts for Intelligent Vision Systems

Advanced Concepts for Intelligent Vision Systems
Author :
Publisher : Springer
Total Pages : 772
Release :
ISBN-10 : 9783319703534
ISBN-13 : 3319703536
Rating : 4/5 (34 Downloads)

Book Synopsis Advanced Concepts for Intelligent Vision Systems by : Jacques Blanc-Talon

Download or read book Advanced Concepts for Intelligent Vision Systems written by Jacques Blanc-Talon and published by Springer. This book was released on 2017-11-22 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 18th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2017, held in Antwerp, Belgium, in September 2017. The 63 full papers presented in this volume were carefully selected from 134 submissions. They deal with human-computer interaction; classification and recognition; navigation, mapping, robotics, and transports; video processing and retrieval; security, forensics, surveillance; and image processing.

Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data

Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 331930206X
ISBN-13 : 9783319302065
Rating : 4/5 (6X Downloads)

Book Synopsis Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data by : Robert B. Fisher

Download or read book Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data written by Robert B. Fisher and published by Springer. This book was released on 2016-04-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a start-to-finish overview of the whole Fish4Knowledge project, in 18 short chapters, each describing one aspect of the project. The Fish4Knowledge project explored the possibilities of big video data, in this case from undersea video. Recording and analyzing 90 thousand hours of video from ten camera locations, the project gives a 3 year view of fish abundance in several tropical coral reefs off the coast of Taiwan. The research system built a remote recording network, over 100 Tb of storage, supercomputer processing, video target detection and tracking, fish species recognition and analysis, a large SQL database to record the results and an efficient retrieval mechanism. Novel user interface mechanisms were developed to provide easy access for marine ecologists, who wanted to explore the dataset. The book is a useful resource for system builders, as it gives an overview of the many new methods that were created to build the Fish4Knowledge system in a manner that also allows readers to see how all the components fit together.

Machine Learning Methods in the Environmental Sciences

Machine Learning Methods in the Environmental Sciences
Author :
Publisher : Cambridge University Press
Total Pages : 364
Release :
ISBN-10 : 9780521791922
ISBN-13 : 0521791928
Rating : 4/5 (22 Downloads)

Book Synopsis Machine Learning Methods in the Environmental Sciences by : William W. Hsieh

Download or read book Machine Learning Methods in the Environmental Sciences written by William W. Hsieh and published by Cambridge University Press. This book was released on 2009-07-30 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.

Deep Learning: Algorithms and Applications

Deep Learning: Algorithms and Applications
Author :
Publisher : Springer
Total Pages : 360
Release :
ISBN-10 : 3030317595
ISBN-13 : 9783030317591
Rating : 4/5 (95 Downloads)

Book Synopsis Deep Learning: Algorithms and Applications by : Witold Pedrycz

Download or read book Deep Learning: Algorithms and Applications written by Witold Pedrycz and published by Springer. This book was released on 2019-11-04 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a wealth of deep-learning algorithms and demonstrates their design process. It also highlights the need for a prudent alignment with the essential characteristics of the nature of learning encountered in the practical problems being tackled. Intended for readers interested in acquiring practical knowledge of analysis, design, and deployment of deep learning solutions to real-world problems, it covers a wide range of the paradigm’s algorithms and their applications in diverse areas including imaging, seismic tomography, smart grids, surveillance and security, and health care, among others. Featuring systematic and comprehensive discussions on the development processes, their evaluation, and relevance, the book offers insights into fundamental design strategies for algorithms of deep learning.

Deep

Deep
Author :
Publisher : Houghton Mifflin Harcourt
Total Pages : 285
Release :
ISBN-10 : 9780547985527
ISBN-13 : 0547985525
Rating : 4/5 (27 Downloads)

Book Synopsis Deep by : James Nestor

Download or read book Deep written by James Nestor and published by Houghton Mifflin Harcourt. This book was released on 2014 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our species is more profoundly connected to the sea than we ever realized, as an intrepid cadre of scientists, athletes, and explorers is now discovering. Deep follows these adventurers into the ocean to report on the latest findings about its wondrous biology -- and unimagined human abilities.

Shape, Contour and Grouping in Computer Vision

Shape, Contour and Grouping in Computer Vision
Author :
Publisher : Springer Science & Business Media
Total Pages : 340
Release :
ISBN-10 : 9783540667223
ISBN-13 : 3540667229
Rating : 4/5 (23 Downloads)

Book Synopsis Shape, Contour and Grouping in Computer Vision by : David A. Forsyth

Download or read book Shape, Contour and Grouping in Computer Vision written by David A. Forsyth and published by Springer Science & Business Media. This book was released on 1999-11-03 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision has been successful in several important applications recently. Vision techniques can now be used to build very good models of buildings from pictures quickly and easily, to overlay operation planning data on a neuros- geon’s view of a patient, and to recognise some of the gestures a user makes to a computer. Object recognition remains a very di cult problem, however. The key questions to understand in recognition seem to be: (1) how objects should be represented and (2) how to manage the line of reasoning that stretches from image data to object identity. An important part of the process of recognition { perhaps, almost all of it { involves assembling bits of image information into helpful groups. There is a wide variety of possible criteria by which these groups could be established { a set of edge points that has a symmetry could be one useful group; others might be a collection of pixels shaded in a particular way, or a set of pixels with coherent colour or texture. Discussing this process of grouping requires a detailed understanding of the relationship between what is seen in the image and what is actually out there in the world.