Data Mining for Bioinformatics Applications

Data Mining for Bioinformatics Applications
Author :
Publisher : Woodhead Publishing
Total Pages : 100
Release :
ISBN-10 : 9780081001073
ISBN-13 : 008100107X
Rating : 4/5 (73 Downloads)

Book Synopsis Data Mining for Bioinformatics Applications by : He Zengyou

Download or read book Data Mining for Bioinformatics Applications written by He Zengyou and published by Woodhead Publishing. This book was released on 2015-06-09 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining for Bioinformatics Applications provides valuable information on the data mining methods have been widely used for solving real bioinformatics problems, including problem definition, data collection, data preprocessing, modeling, and validation. The text uses an example-based method to illustrate how to apply data mining techniques to solve real bioinformatics problems, containing 45 bioinformatics problems that have been investigated in recent research. For each example, the entire data mining process is described, ranging from data preprocessing to modeling and result validation. Provides valuable information on the data mining methods have been widely used for solving real bioinformatics problems Uses an example-based method to illustrate how to apply data mining techniques to solve real bioinformatics problems Contains 45 bioinformatics problems that have been investigated in recent research

Data Mining for Bioinformatics

Data Mining for Bioinformatics
Author :
Publisher : CRC Press
Total Pages : 351
Release :
ISBN-10 : 9780849328015
ISBN-13 : 0849328012
Rating : 4/5 (15 Downloads)

Book Synopsis Data Mining for Bioinformatics by : Sumeet Dua

Download or read book Data Mining for Bioinformatics written by Sumeet Dua and published by CRC Press. This book was released on 2012-11-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering theory, algorithms, and methodologies, as well as data mining technologies, Data Mining for Bioinformatics provides a comprehensive discussion of data-intensive computations used in data mining with applications in bioinformatics. It supplies a broad, yet in-depth, overview of the application domains of data mining for bioinformatics to help readers from both biology and computer science backgrounds gain an enhanced understanding of this cross-disciplinary field. The book offers authoritative coverage of data mining techniques, technologies, and frameworks used for storing, analyzing, and extracting knowledge from large databases in the bioinformatics domains, including genomics and proteomics. It begins by describing the evolution of bioinformatics and highlighting the challenges that can be addressed using data mining techniques. Introducing the various data mining techniques that can be employed in biological databases, the text is organized into four sections: Supplies a complete overview of the evolution of the field and its intersection with computational learning Describes the role of data mining in analyzing large biological databases—explaining the breath of the various feature selection and feature extraction techniques that data mining has to offer Focuses on concepts of unsupervised learning using clustering techniques and its application to large biological data Covers supervised learning using classification techniques most commonly used in bioinformatics—addressing the need for validation and benchmarking of inferences derived using either clustering or classification The book describes the various biological databases prominently referred to in bioinformatics and includes a detailed list of the applications of advanced clustering algorithms used in bioinformatics. Highlighting the challenges encountered during the application of classification on biological databases, it considers systems of both single and ensemble classifiers and shares effort-saving tips for model selection and performance estimation strategies.

Advanced Data Mining Technologies in Bioinformatics

Advanced Data Mining Technologies in Bioinformatics
Author :
Publisher : IGI Global
Total Pages : 343
Release :
ISBN-10 : 9781591408635
ISBN-13 : 1591408636
Rating : 4/5 (35 Downloads)

Book Synopsis Advanced Data Mining Technologies in Bioinformatics by : Hui-Huang Hsu

Download or read book Advanced Data Mining Technologies in Bioinformatics written by Hui-Huang Hsu and published by IGI Global. This book was released on 2006-01-01 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book covers research topics of data mining on bioinformatics presenting the basics and problems of bioinformatics and applications of data mining technologies pertaining to the field"--Provided by publisher.

Data Mining in Bioinformatics

Data Mining in Bioinformatics
Author :
Publisher : Springer Science & Business Media
Total Pages : 356
Release :
ISBN-10 : 1852336714
ISBN-13 : 9781852336714
Rating : 4/5 (14 Downloads)

Book Synopsis Data Mining in Bioinformatics by : Jason T. L. Wang

Download or read book Data Mining in Bioinformatics written by Jason T. L. Wang and published by Springer Science & Business Media. This book was released on 2005 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written especially for computer scientists, all necessary biology is explained. Presents new techniques on gene expression data mining, gene mapping for disease detection, and phylogenetic knowledge discovery.

Data Mining

Data Mining
Author :
Publisher : John Wiley & Sons
Total Pages : 423
Release :
ISBN-10 : 9780471474883
ISBN-13 : 0471474886
Rating : 4/5 (83 Downloads)

Book Synopsis Data Mining by : Sushmita Mitra

Download or read book Data Mining written by Sushmita Mitra and published by John Wiley & Sons. This book was released on 2005-01-21 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: First title to ever present soft computing approaches and their application in data mining, along with the traditional hard-computing approaches Addresses the principles of multimedia data compression techniques (for image, video, text) and their role in data mining Discusses principles and classical algorithms on string matching and their role in data mining

Biological Data Mining

Biological Data Mining
Author :
Publisher : CRC Press
Total Pages : 736
Release :
ISBN-10 : 9781420086850
ISBN-13 : 1420086855
Rating : 4/5 (50 Downloads)

Book Synopsis Biological Data Mining by : Jake Y. Chen

Download or read book Biological Data Mining written by Jake Y. Chen and published by CRC Press. This book was released on 2009-09-01 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like a data-guzzling turbo engine, advanced data mining has been powering post-genome biological studies for two decades. Reflecting this growth, Biological Data Mining presents comprehensive data mining concepts, theories, and applications in current biological and medical research. Each chapter is written by a distinguished team of interdisciplin

Biological Data Mining And Its Applications In Healthcare

Biological Data Mining And Its Applications In Healthcare
Author :
Publisher : World Scientific
Total Pages : 437
Release :
ISBN-10 : 9789814551021
ISBN-13 : 9814551023
Rating : 4/5 (21 Downloads)

Book Synopsis Biological Data Mining And Its Applications In Healthcare by : Xiaoli Li

Download or read book Biological Data Mining And Its Applications In Healthcare written by Xiaoli Li and published by World Scientific. This book was released on 2013-11-28 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to disease pathways and electronic health records. To exploit these data for discovering new knowledge that can be translated into clinical applications, there are fundamental data analysis difficulties that have to be overcome. Practical issues such as handling noisy and incomplete data, processing compute-intensive tasks, and integrating various data sources, are new challenges faced by biologists in the post-genome era. This book will cover the fundamentals of state-of-the-art data mining techniques which have been designed to handle such challenging data analysis problems, and demonstrate with real applications how biologists and clinical scientists can employ data mining to enable them to make meaningful observations and discoveries from a wide array of heterogeneous data from molecular biology to pharmaceutical and clinical domains.