Cycles, Transfers, and Motivic Homology Theories. (AM-143)

Cycles, Transfers, and Motivic Homology Theories. (AM-143)
Author :
Publisher : Princeton University Press
Total Pages : 262
Release :
ISBN-10 : 9780691048154
ISBN-13 : 0691048150
Rating : 4/5 (54 Downloads)

Book Synopsis Cycles, Transfers, and Motivic Homology Theories. (AM-143) by : Vladimir Voevodsky

Download or read book Cycles, Transfers, and Motivic Homology Theories. (AM-143) written by Vladimir Voevodsky and published by Princeton University Press. This book was released on 2000 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The original goal that ultimately led to this volume was the construction of "motivic cohomology theory," whose existence was conjectured by A. Beilinson and S. Lichtenbaum. This is achieved in the book's fourth paper, using results of the other papers whose additional role is to contribute to our understanding of various properties of algebraic cycles. The material presented provides the foundations for the recent proof of the celebrated "Milnor Conjecture" by Vladimir Voevodsky. The theory of sheaves of relative cycles is developed in the first paper of this volume. The theory of presheaves with transfers and more specifically homotopy invariant presheaves with transfers is the main theme of the second paper. The Friedlander-Lawson moving lemma for families of algebraic cycles appears in the third paper in which a bivariant theory called bivariant cycle cohomology is constructed. The fifth and last paper in the volume gives a proof of the fact that bivariant cycle cohomology groups are canonically isomorphic (in appropriate cases) to Bloch's higher Chow groups, thereby providing a link between the authors' theory and Bloch's original approach to motivic (co-)homology.

Transcendental Aspects of Algebraic Cycles

Transcendental Aspects of Algebraic Cycles
Author :
Publisher : Cambridge University Press
Total Pages : 314
Release :
ISBN-10 : 0521545471
ISBN-13 : 9780521545471
Rating : 4/5 (71 Downloads)

Book Synopsis Transcendental Aspects of Algebraic Cycles by : S. Müller-Stach

Download or read book Transcendental Aspects of Algebraic Cycles written by S. Müller-Stach and published by Cambridge University Press. This book was released on 2004-04-20 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lecture notes for graduates or researchers wishing to enter this modern field of research.

Surveys on surgery theory : papers dedicated to C.T.C. Wall.

Surveys on surgery theory : papers dedicated to C.T.C. Wall.
Author :
Publisher : Princeton University Press
Total Pages : 452
Release :
ISBN-10 : 0691088144
ISBN-13 : 9780691088143
Rating : 4/5 (44 Downloads)

Book Synopsis Surveys on surgery theory : papers dedicated to C.T.C. Wall. by : Sylvain Cappell

Download or read book Surveys on surgery theory : papers dedicated to C.T.C. Wall. written by Sylvain Cappell and published by Princeton University Press. This book was released on 2000 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Quadratic Forms, Linear Algebraic Groups, and Cohomology

Quadratic Forms, Linear Algebraic Groups, and Cohomology
Author :
Publisher : Springer Science & Business Media
Total Pages : 344
Release :
ISBN-10 : 9781441962119
ISBN-13 : 1441962115
Rating : 4/5 (19 Downloads)

Book Synopsis Quadratic Forms, Linear Algebraic Groups, and Cohomology by : Skip Garibaldi

Download or read book Quadratic Forms, Linear Algebraic Groups, and Cohomology written by Skip Garibaldi and published by Springer Science & Business Media. This book was released on 2010-07-16 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in Mathematics is a book series devoted to all areas of mathematics, pure and applied. The series emphasizes research monographs describing the latest advances. Edited volumes that focus on areas that have seen dramatic progress, or are of special interest, are encouraged as well.

Stable Homotopy Around the Arf-Kervaire Invariant

Stable Homotopy Around the Arf-Kervaire Invariant
Author :
Publisher : Springer Science & Business Media
Total Pages : 250
Release :
ISBN-10 : 9783764399047
ISBN-13 : 376439904X
Rating : 4/5 (47 Downloads)

Book Synopsis Stable Homotopy Around the Arf-Kervaire Invariant by : Victor P. Snaith

Download or read book Stable Homotopy Around the Arf-Kervaire Invariant written by Victor P. Snaith and published by Springer Science & Business Media. This book was released on 2009-03-28 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Were I to take an iron gun, And ?re it o? towards the sun; I grant ‘twould reach its mark at last, But not till many years had passed. But should that bullet change its force, And to the planets take its course, ‘Twould never reach the nearest star, Because it is so very far. from FACTS by Lewis Carroll [55] Let me begin by describing the two purposes which prompted me to write this monograph. This is a book about algebraic topology and more especially about homotopy theory. Since the inception of algebraic topology [217] the study of homotopy classes of continuous maps between spheres has enjoyed a very exc- n n tional, central role. As is well known, for homotopy classes of maps f : S ?? S with n? 1 the sole homotopy invariant is the degree, which characterises the homotopy class completely. The search for a continuous map between spheres of di?erent dimensions and not homotopic to the constant map had to wait for its resolution until the remarkable paper of Heinz Hopf [111]. In retrospect, ?nding 3 an example was rather easy because there is a canonical quotient map from S to 3 1 1 2 theorbitspaceofthe freecircleactionS /S =CP = S .

Period Mappings and Period Domains

Period Mappings and Period Domains
Author :
Publisher : Cambridge University Press
Total Pages : 452
Release :
ISBN-10 : 0521814669
ISBN-13 : 9780521814669
Rating : 4/5 (69 Downloads)

Book Synopsis Period Mappings and Period Domains by : James Carlson

Download or read book Period Mappings and Period Domains written by James Carlson and published by Cambridge University Press. This book was released on 2003-10-20 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: The period matrix of a curve effectively describes how the complex structure varies; this is Torelli's theorem dating from the beginning of the nineteenth century. In the 1950s during the first revolution of algebraic geometry, attention shifted to higher dimensions and one of the guiding conjectures, the Hodge conjecture, got formulated. In the late 1960s and 1970s Griffiths, in an attempt to solve this conjecture, generalized the classical period matrices introducing period domains and period maps for higher-dimensional manifolds. He then found some unexpected new phenomena for cycles on higher-dimensional algebraic varieties, which were later made much more precise by Clemens, Voisin, Green and others. This 2003 book presents this development starting at the beginning: the elliptic curve. This and subsequent examples (curves of higher genus, double planes) are used to motivate the concepts that play a role in the rest of the book.

Cycles, Transfers, and Motivic Homology Theories. (AM-143), Volume 143

Cycles, Transfers, and Motivic Homology Theories. (AM-143), Volume 143
Author :
Publisher : Princeton University Press
Total Pages : 261
Release :
ISBN-10 : 9781400837120
ISBN-13 : 140083712X
Rating : 4/5 (20 Downloads)

Book Synopsis Cycles, Transfers, and Motivic Homology Theories. (AM-143), Volume 143 by : Vladimir Voevodsky

Download or read book Cycles, Transfers, and Motivic Homology Theories. (AM-143), Volume 143 written by Vladimir Voevodsky and published by Princeton University Press. This book was released on 2011-11-12 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The original goal that ultimately led to this volume was the construction of "motivic cohomology theory," whose existence was conjectured by A. Beilinson and S. Lichtenbaum. This is achieved in the book's fourth paper, using results of the other papers whose additional role is to contribute to our understanding of various properties of algebraic cycles. The material presented provides the foundations for the recent proof of the celebrated "Milnor Conjecture" by Vladimir Voevodsky. The theory of sheaves of relative cycles is developed in the first paper of this volume. The theory of presheaves with transfers and more specifically homotopy invariant presheaves with transfers is the main theme of the second paper. The Friedlander-Lawson moving lemma for families of algebraic cycles appears in the third paper in which a bivariant theory called bivariant cycle cohomology is constructed. The fifth and last paper in the volume gives a proof of the fact that bivariant cycle cohomology groups are canonically isomorphic (in appropriate cases) to Bloch's higher Chow groups, thereby providing a link between the authors' theory and Bloch's original approach to motivic (co-)homology.