Computational Modeling in Tissue Engineering

Computational Modeling in Tissue Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 438
Release :
ISBN-10 : 9783642325632
ISBN-13 : 3642325637
Rating : 4/5 (32 Downloads)

Book Synopsis Computational Modeling in Tissue Engineering by : Liesbet Geris

Download or read book Computational Modeling in Tissue Engineering written by Liesbet Geris and published by Springer Science & Business Media. This book was released on 2012-10-30 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.

Computational Modeling in Biomedical Engineering and Medical Physics

Computational Modeling in Biomedical Engineering and Medical Physics
Author :
Publisher : Academic Press
Total Pages : 320
Release :
ISBN-10 : 9780128178973
ISBN-13 : 0128178973
Rating : 4/5 (73 Downloads)

Book Synopsis Computational Modeling in Biomedical Engineering and Medical Physics by : Alexandru Morega

Download or read book Computational Modeling in Biomedical Engineering and Medical Physics written by Alexandru Morega and published by Academic Press. This book was released on 2020-10-02 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies. Presents the fundamentals of mathematical and numerical modeling of engineering problems in medicine Discusses many of the most common modelling scenarios for Biomedical Engineering, including, electrical activity of the heart hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods Includes discussion of the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling, physics scaling, Constructal Law criteria in morphing shape and structure of systems with internal flows, computational domain construction, numerical modelling issues, and validation techniques used to ascertain numerical simulation results

Tissue Engineering

Tissue Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 191
Release :
ISBN-10 : 9789400770737
ISBN-13 : 9400770731
Rating : 4/5 (37 Downloads)

Book Synopsis Tissue Engineering by : Paulo Rui Fernandes

Download or read book Tissue Engineering written by Paulo Rui Fernandes and published by Springer Science & Business Media. This book was released on 2013-07-31 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the state of the art on computational modeling and fabrication in Tissue Engineering. It is inspired by the ECCOMAS thematic conference, the European Committee on Computational Methods in Applied Sciences, on Tissue Engineering, held in Lisbon, Portugal, June 2-4, 2011. Tissue Engineering is a multidisciplinary field involving scientists from different fields. The development of mathematical methods is quite relevant to understand cell biology and human tissues as well to model, design and fabricate optimized and smart scaffolds. Emphasis is put on mathematical and computational modeling for scaffold design and fabrication. This particular area of tissue engineering, whose goal is to obtain substitutes for hard tissues such as bone and cartilage, is growing in importance.

Computational Modeling and Simulation Examples in Bioengineering

Computational Modeling and Simulation Examples in Bioengineering
Author :
Publisher : John Wiley & Sons
Total Pages : 386
Release :
ISBN-10 : 9781119563945
ISBN-13 : 1119563941
Rating : 4/5 (45 Downloads)

Book Synopsis Computational Modeling and Simulation Examples in Bioengineering by : Nenad Filipovic

Download or read book Computational Modeling and Simulation Examples in Bioengineering written by Nenad Filipovic and published by John Wiley & Sons. This book was released on 2021-12-14 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic overview of the quickly developing field of bioengineering—with state-of-the-art modeling software! Computational Modeling and Simulation Examples in Bioengineering provides a comprehensive introduction to the emerging field of bioengineering. It provides the theoretical background necessary to simulating pathological conditions in the bones, muscles, cardiovascular tissue, and cancers, as well as lung and vertigo disease. The methodological approaches used for simulations include the finite element, dissipative particle dynamics, and lattice Boltzman. The text includes access to a state-of-the-art software package for simulating the theoretical problems. In this way, the book enhances the reader's learning capabilities in the field of biomedical engineering. The aim of this book is to provide concrete examples of applied modeling in biomedical engineering. Examples in a wide range of areas equip the reader with a foundation of knowledge regarding which problems can be modeled with which numerical methods. With more practical examples and more online software support than any competing text, this book organizes the field of computational bioengineering into an accessible and thorough introduction. Computational Modeling and Simulation Examples in Bioengineering: Includes a state-of-the-art software package enabling readers to engage in hands-on modeling of the examples in the book Provides a background on continuum and discrete modeling, along with equations and derivations for three key numerical methods Considers examples in the modeling of bones, skeletal muscles, cartilage, tissue engineering, blood flow, plaque, and more Explores stent deployment modeling as well as stent design and optimization techniques Generates different examples of fracture fixation with respect to the advantages in medical practice applications Computational Modeling and Simulation Examples in Bioengineering is an excellent textbook for students of bioengineering, as well as a support for basic and clinical research. Medical doctors and other clinical professionals will also benefit from this resource and guide to the latest modeling techniques.

Computational Modeling in Biomechanics

Computational Modeling in Biomechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 580
Release :
ISBN-10 : 9789048135752
ISBN-13 : 9048135753
Rating : 4/5 (52 Downloads)

Book Synopsis Computational Modeling in Biomechanics by : Suvranu De

Download or read book Computational Modeling in Biomechanics written by Suvranu De and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Availability of advanced computational technology has fundamentally altered the investigative paradigm in the field of biomechanics. Armed with sophisticated computational tools, researchers are seeking answers to fundamental questions by exploring complex biomechanical phenomena at the molecular, cellular, tissue and organ levels. The computational armamentarium includes such diverse tools as the ab initio quantum mechanical and molecular dynamics methods at the atomistic scales and the finite element, boundary element, meshfree as well as immersed boundary and lattice-Boltzmann methods at the continuum scales. Multiscale methods that link various scales are also being developed. While most applications require forward analysis, e.g., finding deformations and stresses as a result of loading, others involve determination of constitutive parameters based on tissue imaging and inverse analysis. This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics including biofluids and mass transfer, cardiovascular mechanics, musculoskeletal mechanics, soft tissue mechanics, and biomolecular mechanics.

Modelling Organs, Tissues, Cells and Devices

Modelling Organs, Tissues, Cells and Devices
Author :
Publisher : Springer
Total Pages : 504
Release :
ISBN-10 : 9783642548017
ISBN-13 : 3642548016
Rating : 4/5 (17 Downloads)

Book Synopsis Modelling Organs, Tissues, Cells and Devices by : Socrates Dokos

Download or read book Modelling Organs, Tissues, Cells and Devices written by Socrates Dokos and published by Springer. This book was released on 2017-03-08 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.

Uncertainty in Biology

Uncertainty in Biology
Author :
Publisher : Springer
Total Pages : 471
Release :
ISBN-10 : 9783319212968
ISBN-13 : 3319212966
Rating : 4/5 (68 Downloads)

Book Synopsis Uncertainty in Biology by : Liesbet Geris

Download or read book Uncertainty in Biology written by Liesbet Geris and published by Springer. This book was released on 2015-10-26 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: 1. Modeling establishment under uncertainty 2. Model selection and parameter fitting 3. Sensitivity analysis and model adaptation 4. Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate students and researchers active in the field of computational modeling of biomedical processes who seek to acquaint themselves with the different ways in which to study the parameter space of their model as well as its overall behavior.