Computation and Combinatorics in Dynamics, Stochastics and Control

Computation and Combinatorics in Dynamics, Stochastics and Control
Author :
Publisher : Springer
Total Pages : 734
Release :
ISBN-10 : 9783030015930
ISBN-13 : 3030015939
Rating : 4/5 (30 Downloads)

Book Synopsis Computation and Combinatorics in Dynamics, Stochastics and Control by : Elena Celledoni

Download or read book Computation and Combinatorics in Dynamics, Stochastics and Control written by Elena Celledoni and published by Springer. This book was released on 2019-01-13 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Abel Symposia volume at hand contains a collection of high-quality articles written by the world’s leading experts, and addressing all mathematicians interested in advances in deterministic and stochastic dynamical systems, numerical analysis, and control theory. In recent years we have witnessed a remarkable convergence between individual mathematical disciplines that approach deterministic and stochastic dynamical systems from mathematical analysis, computational mathematics and control theoretical perspectives. Breakthrough developments in these fields now provide a common mathematical framework for attacking many different problems related to differential geometry, analysis and algorithms for stochastic and deterministic dynamics. In the Abel Symposium 2016, which took place from August 16-19 in Rosendal near Bergen, leading researchers in the fields of deterministic and stochastic differential equations, control theory, numerical analysis, algebra and random processes presented and discussed the current state of the art in these diverse fields. The current Abel Symposia volume may serve as a point of departure for exploring these related but diverse fields of research, as well as an indicator of important current and future developments in modern mathematics.

Geometry and Invariance in Stochastic Dynamics

Geometry and Invariance in Stochastic Dynamics
Author :
Publisher : Springer Nature
Total Pages : 273
Release :
ISBN-10 : 9783030874322
ISBN-13 : 303087432X
Rating : 4/5 (22 Downloads)

Book Synopsis Geometry and Invariance in Stochastic Dynamics by : Stefania Ugolini

Download or read book Geometry and Invariance in Stochastic Dynamics written by Stefania Ugolini and published by Springer Nature. This book was released on 2022-02-09 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of the Random Transformations and Invariance in Stochastic Dynamics conference held in Verona from the 25th to the 28th of March 2019 in honour of Sergio Albeverio. It presents the new area of studies concerning invariance and symmetry properties of finite and infinite dimensional stochastic differential equations.This area constitutes a natural, much needed, extension of the theory of classical ordinary and partial differential equations, where the reduction theory based on symmetry and invariance of such classical equations has historically proved to be very important both for theoretical and numerical studies and has given rise to important applications. The purpose of the present book is to present the state of the art of the studies on stochastic systems from this point of view, present some of the underlying fundamental ideas and methods involved, and to outline the main lines for future developments. The main focus is on bridging the gap between deterministic and stochastic approaches, with the goal of contributing to the elaboration of a unified theory that will have a great impact both from the theoretical point of view and the point of view of applications. The reader is a mathematician or a theoretical physicist. The main discipline is stochastic analysis with profound ideas coming from Mathematical Physics and Lie’s Group Geometry. While the audience consists essentially of academicians, the reader can also be a practitioner with Ph.D., who is interested in efficient stochastic modelling.

An Introduction to Infinite-Dimensional Differential Geometry

An Introduction to Infinite-Dimensional Differential Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 283
Release :
ISBN-10 : 9781316514887
ISBN-13 : 1316514889
Rating : 4/5 (87 Downloads)

Book Synopsis An Introduction to Infinite-Dimensional Differential Geometry by : Alexander Schmeding

Download or read book An Introduction to Infinite-Dimensional Differential Geometry written by Alexander Schmeding and published by Cambridge University Press. This book was released on 2022-12-31 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces foundational concepts in infinite-dimensional differential geometry beyond Banach manifolds, showcasing its modern applications.

Stochastic Dynamics Out of Equilibrium

Stochastic Dynamics Out of Equilibrium
Author :
Publisher : Springer
Total Pages : 654
Release :
ISBN-10 : 9783030150969
ISBN-13 : 3030150968
Rating : 4/5 (69 Downloads)

Book Synopsis Stochastic Dynamics Out of Equilibrium by : Giambattista Giacomin

Download or read book Stochastic Dynamics Out of Equilibrium written by Giambattista Giacomin and published by Springer. This book was released on 2019-06-30 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stemming from the IHP trimester "Stochastic Dynamics Out of Equilibrium", this collection of contributions focuses on aspects of nonequilibrium dynamics and its ongoing developments. It is common practice in statistical mechanics to use models of large interacting assemblies governed by stochastic dynamics. In this context "equilibrium" is understood as stochastically (time) reversible dynamics with respect to a prescribed Gibbs measure. Nonequilibrium dynamics correspond on the other hand to irreversible evolutions, where fluxes appear in physical systems, and steady-state measures are unknown. The trimester, held at the Institut Henri Poincaré (IHP) in Paris from April to July 2017, comprised various events relating to three domains (i) transport in non-equilibrium statistical mechanics; (ii) the design of more efficient simulation methods; (iii) life sciences. It brought together physicists, mathematicians from many domains, computer scientists, as well as researchers working at the interface between biology, physics and mathematics. The present volume is indispensable reading for researchers and Ph.D. students working in such areas.

Dyson–Schwinger Equations, Renormalization Conditions, and the Hopf Algebra of Perturbative Quantum Field Theory

Dyson–Schwinger Equations, Renormalization Conditions, and the Hopf Algebra of Perturbative Quantum Field Theory
Author :
Publisher : Springer Nature
Total Pages : 373
Release :
ISBN-10 : 9783031544460
ISBN-13 : 3031544463
Rating : 4/5 (60 Downloads)

Book Synopsis Dyson–Schwinger Equations, Renormalization Conditions, and the Hopf Algebra of Perturbative Quantum Field Theory by : Paul-Hermann Balduf

Download or read book Dyson–Schwinger Equations, Renormalization Conditions, and the Hopf Algebra of Perturbative Quantum Field Theory written by Paul-Hermann Balduf and published by Springer Nature. This book was released on with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Combinatorics and Random Matrix Theory

Combinatorics and Random Matrix Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 478
Release :
ISBN-10 : 9780821848418
ISBN-13 : 0821848410
Rating : 4/5 (18 Downloads)

Book Synopsis Combinatorics and Random Matrix Theory by : Jinho Baik

Download or read book Combinatorics and Random Matrix Theory written by Jinho Baik and published by American Mathematical Soc.. This book was released on 2016-06-22 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.

Mathematical Approaches to Biomolecular Structure and Dynamics

Mathematical Approaches to Biomolecular Structure and Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 270
Release :
ISBN-10 : 0387948384
ISBN-13 : 9780387948386
Rating : 4/5 (84 Downloads)

Book Synopsis Mathematical Approaches to Biomolecular Structure and Dynamics by : Jill P. Mesirov

Download or read book Mathematical Approaches to Biomolecular Structure and Dynamics written by Jill P. Mesirov and published by Springer Science & Business Media. This book was released on 1996-08-29 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications MATHEMATICAL APPROACHES TO BIOMOLECULAR STRUCTURE AND DYNAMICS is one of the two volumes based on the proceedings of the 1994 IMA Sum mer Program on "Molecular Biology" and comprises Weeks 3 and 4 of the four-week program. Weeks 1 and 2 appeared as Volume 81: Genetic Mapping and DNA Sequencing. We thank Jill P. Mesirov, Klaus Schulten, and De Witt Sumners for organizing Weeks 3 and 4 of the workshop and for editing the proceedings. We also take this opportunity to thank the National Institutes of Health (NIH) (National Center for Human Genome Research), the National Science Foundation (NSF) (Biological Instrumen tation and Resources), and the Department of Energy (DOE), whose fi nancial support made the summer program possible. A vner Friedman Robert Gulliver v PREFACE The revolutionary progress in molecular biology within the last 30 years opens the way to full understanding of the molecular structures and mech anisms of living organisms. Interdisciplinary research in mathematics and molecular biology is driven by ever growing experimental, theoretical and computational power. The mathematical sciences accompany and support much of the progress achieved by experiment and computation as well as provide insight into geometric and topological properties of biomolecular structure and processes. This volume consists of a representative sample of the papers presented during the last two weeks of the month-long Institute for Mathematics and Its Applications Summer 1994 Program in Molecular Biology.