Complex Numbers in n Dimensions

Complex Numbers in n Dimensions
Author :
Publisher : Elsevier
Total Pages : 286
Release :
ISBN-10 : 9780080529585
ISBN-13 : 0080529585
Rating : 4/5 (85 Downloads)

Book Synopsis Complex Numbers in n Dimensions by : S. Olariu

Download or read book Complex Numbers in n Dimensions written by S. Olariu and published by Elsevier. This book was released on 2002-06-20 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two distinct systems of hypercomplex numbers in n dimensions are introduced in this book, for which the multiplication is associative and commutative, and which are rich enough in properties such that exponential and trigonometric forms exist and the concepts of analytic n-complex function, contour integration and residue can be defined.The first type of hypercomplex numbers, called polar hypercomplex numbers, is characterized by the presence in an even number of dimensions greater or equal to 4 of two polar axes, and by the presence in an odd number of dimensions of one polar axis. The other type of hypercomplex numbers exists as a distinct entity only when the number of dimensions n of the space is even, and since the position of a point is specified with the aid of n/2-1 planar angles, these numbers have been called planar hypercomplex numbers.The development of the concept of analytic functions of hypercomplex variables was rendered possible by the existence of an exponential form of the n-complex numbers. Azimuthal angles, which are cyclic variables, appear in these forms at the exponent, and lead to the concept of n-dimensional hypercomplex residue. Expressions are given for the elementary functions of n-complex variable. In particular, the exponential function of an n-complex number is expanded in terms of functions called in this book n-dimensional cosexponential functionsof the polar and respectively planar type, which are generalizations to n dimensions of the sine, cosine and exponential functions.In the case of polar complex numbers, a polynomial can be written as a product of linear or quadratic factors, although it is interesting that several factorizations are in general possible. In the case of planar hypercomplex numbers, a polynomial can always be written as a product of linear factors, although, again, several factorizations are in general possible.The book presents a detailed analysis of the hypercomplex numbers in 2, 3 and 4 dimensions, then presents the properties of hypercomplex numbers in 5 and 6 dimensions, and it continues with a detailed analysis of polar and planar hypercomplex numbers in n dimensions. The essence of this book is the interplay between the algebraic, the geometric and the analytic facets of the relations.

Visual Complex Analysis

Visual Complex Analysis
Author :
Publisher : Oxford University Press
Total Pages : 620
Release :
ISBN-10 : 0198534469
ISBN-13 : 9780198534464
Rating : 4/5 (69 Downloads)

Book Synopsis Visual Complex Analysis by : Tristan Needham

Download or read book Visual Complex Analysis written by Tristan Needham and published by Oxford University Press. This book was released on 1997 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.

Geometry of Complex Numbers

Geometry of Complex Numbers
Author :
Publisher : Courier Corporation
Total Pages : 228
Release :
ISBN-10 : 9780486135861
ISBN-13 : 0486135861
Rating : 4/5 (61 Downloads)

Book Synopsis Geometry of Complex Numbers by : Hans Schwerdtfeger

Download or read book Geometry of Complex Numbers written by Hans Schwerdtfeger and published by Courier Corporation. This book was released on 2012-05-23 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.

Hypercomplex Numbers

Hypercomplex Numbers
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 1461281911
ISBN-13 : 9781461281917
Rating : 4/5 (11 Downloads)

Book Synopsis Hypercomplex Numbers by : I.L. Kantor

Download or read book Hypercomplex Numbers written by I.L. Kantor and published by Springer. This book was released on 2011-09-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with various systems of "numbers" that can be constructed by adding "imaginary units" to the real numbers. The complex numbers are a classical example of such a system. One of the most important properties of the complex numbers is given by the identity (1) Izz'l = Izl·Iz'I· It says, roughly, that the absolute value of a product is equal to the product of the absolute values of the factors. If we put z = al + a2i, z' = b+ bi, 1 2 then we can rewrite (1) as The last identity states that "the product of a sum of two squares by a sum of two squares is a sum of two squares. " It is natural to ask if there are similar identities with more than two squares, and how all of them can be described. Already Euler had given an example of an identity with four squares. Later an identity with eight squares was found. But a complete solution of the problem was obtained only at the end of the 19th century. It is substantially true that every identity with n squares is linked to formula (1), except that z and z' no longer denote complex numbers but more general "numbers" where i,j, . . . , I are imaginary units. One of the main themes of this book is the establishing of the connection between identities with n squares and formula (1).

New Foundations for Classical Mechanics

New Foundations for Classical Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 716
Release :
ISBN-10 : 9780306471223
ISBN-13 : 0306471221
Rating : 4/5 (23 Downloads)

Book Synopsis New Foundations for Classical Mechanics by : D. Hestenes

Download or read book New Foundations for Classical Mechanics written by D. Hestenes and published by Springer Science & Business Media. This book was released on 2005-12-17 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt: (revised) This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics.

Complex Numbers and Geometry

Complex Numbers and Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 204
Release :
ISBN-10 : 9781470451820
ISBN-13 : 1470451824
Rating : 4/5 (20 Downloads)

Book Synopsis Complex Numbers and Geometry by : Liang-shin Hahn

Download or read book Complex Numbers and Geometry written by Liang-shin Hahn and published by American Mathematical Soc.. This book was released on 2019-12-26 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to demonstrate that complex numbers and geometry can be blended together beautifully. This results in easy proofs and natural generalizations of many theorems in plane geometry, such as the Napoleon theorem, the Ptolemy-Euler theorem, the Simson theorem, and the Morley theorem. The book is self-contained—no background in complex numbers is assumed—and can be covered at a leisurely pace in a one-semester course. Many of the chapters can be read independently. Over 100 exercises are included. The book would be suitable as a text for a geometry course, or for a problem solving seminar, or as enrichment for the student who wants to know more.

Fractal Geometry, Complex Dimensions and Zeta Functions

Fractal Geometry, Complex Dimensions and Zeta Functions
Author :
Publisher : Springer Science & Business Media
Total Pages : 583
Release :
ISBN-10 : 9781461421764
ISBN-13 : 1461421764
Rating : 4/5 (64 Downloads)

Book Synopsis Fractal Geometry, Complex Dimensions and Zeta Functions by : Michel L. Lapidus

Download or read book Fractal Geometry, Complex Dimensions and Zeta Functions written by Michel L. Lapidus and published by Springer Science & Business Media. This book was released on 2012-09-20 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.