Coarse Geometry of Topological Groups

Coarse Geometry of Topological Groups
Author :
Publisher : Cambridge University Press
Total Pages : 309
Release :
ISBN-10 : 9781108842471
ISBN-13 : 110884247X
Rating : 4/5 (71 Downloads)

Book Synopsis Coarse Geometry of Topological Groups by : Christian Rosendal

Download or read book Coarse Geometry of Topological Groups written by Christian Rosendal and published by Cambridge University Press. This book was released on 2021-12-16 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a general framework for doing geometric group theory for non-locally-compact topological groups arising in mathematical practice.

Coarse Geometry of Topological Groups

Coarse Geometry of Topological Groups
Author :
Publisher : Cambridge University Press
Total Pages : 309
Release :
ISBN-10 : 9781108905190
ISBN-13 : 1108905196
Rating : 4/5 (90 Downloads)

Book Synopsis Coarse Geometry of Topological Groups by : Christian Rosendal

Download or read book Coarse Geometry of Topological Groups written by Christian Rosendal and published by Cambridge University Press. This book was released on 2021-12-16 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in mathematical practice, including homeomorphism and diffeomorphism groups of manifolds, isometry groups of separable metric spaces and automorphism groups of countable structures. Using Roe's framework of coarse structures and spaces, the author defines a natural coarse geometric structure on all topological groups. This structure is accessible to investigation, especially in the case of Polish groups, and often has an explicit description, generalising well-known structures in familiar cases including finitely generated discrete groups, compactly generated locally compact groups and Banach spaces. In most cases, the coarse geometric structure is metrisable and may even be refined to a canonical quasimetric structure on the group. The book contains many worked examples and sufficient introductory material to be accessible to beginning graduate students. An appendix outlines several open problems in this young and rich theory.

Metric Geometry of Locally Compact Groups

Metric Geometry of Locally Compact Groups
Author :
Publisher : European Mathematical Society
Total Pages : 248
Release :
ISBN-10 : 303719166X
ISBN-13 : 9783037191668
Rating : 4/5 (6X Downloads)

Book Synopsis Metric Geometry of Locally Compact Groups by : Yves Cornulier

Download or read book Metric Geometry of Locally Compact Groups written by Yves Cornulier and published by European Mathematical Society. This book was released on 2016 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main aim of this book is the study of locally compact groups from a geometric perspective, with an emphasis on appropriate metrics that can be defined on them. The approach has been successful for finitely generated groups and can be favorably extended to locally compact groups. Parts of the book address the coarse geometry of metric spaces, where ``coarse'' refers to that part of geometry concerning properties that can be formulated in terms of large distances only. This point of view is instrumental in studying locally compact groups. Basic results in the subject are exposed with complete proofs; others are stated with appropriate references. Most importantly, the development of the theory is illustrated by numerous examples, including matrix groups with entries in the the field of real or complex numbers, or other locally compact fields such as $p$-adic fields, isometry groups of various metric spaces, and last but not least, discrete groups themselves. The book is aimed at graduate students, advanced undergraduate students, and mathematicians seeking some introduction to coarse geometry and locally compact groups.

Topological Groups

Topological Groups
Author :
Publisher : MDPI
Total Pages : 160
Release :
ISBN-10 : 9783038976448
ISBN-13 : 303897644X
Rating : 4/5 (48 Downloads)

Book Synopsis Topological Groups by : Sidney A. Morris

Download or read book Topological Groups written by Sidney A. Morris and published by MDPI. This book was released on 2019-03-05 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following the tremendous reception of our first volume on topological groups called "Topological Groups: Yesterday, Today, and Tomorrow", we now present our second volume. Like the first volume, this collection contains articles by some of the best scholars in the world on topological groups. A feature of the first volume was surveys, and we continue that tradition in this volume with three new surveys. These surveys are of interest not only to the expert but also to those who are less experienced. Particularly exciting to active researchers, especially young researchers, is the inclusion of over three dozen open questions. This volume consists of 11 papers containing many new and interesting results and examples across the spectrum of topological group theory and related topics. Well-known researchers who contributed to this volume include Taras Banakh, Michael Megrelishvili, Sidney A. Morris, Saharon Shelah, George A. Willis, O'lga V. Sipacheva, and Stephen Wagner.

An Invitation to Coarse Groups

An Invitation to Coarse Groups
Author :
Publisher : Springer Nature
Total Pages : 249
Release :
ISBN-10 : 9783031427602
ISBN-13 : 3031427602
Rating : 4/5 (02 Downloads)

Book Synopsis An Invitation to Coarse Groups by : Arielle Leitner

Download or read book An Invitation to Coarse Groups written by Arielle Leitner and published by Springer Nature. This book was released on 2024-01-13 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book lays the foundation for a theory of coarse groups: namely, sets with operations that satisfy the group axioms “up to uniformly bounded error”. These structures are the group objects in the category of coarse spaces, and arise naturally as approximate subgroups, or as coarse kernels. The first aim is to provide a standard entry-level introduction to coarse groups. Extra care has been taken to give a detailed, self-contained and accessible account of the theory. The second aim is to quickly bring the reader to the forefront of research. This is easily accomplished, as the subject is still young, and even basic questions remain unanswered. Reflecting its dual purpose, the book is divided into two parts. The first part covers the fundamentals of coarse groups and their actions. Here the theory of coarse homomorphisms, quotients and subgroups is developed, with proofs of coarse versions of the isomorphism theorems, and it is shown how coarse actions are related to fundamental aspects of geometric group theory. The second part, which is less self-contained, is an invitation to further research, where each thread leads to open questions of varying depth and difficulty. Among other topics, it explores coarse group structures on set-groups, groups of coarse automorphisms and spaces of controlled maps. The main focus is on connections between the theory of coarse groups and classical subjects, including: number theory; the study of bi-invariant metrics on groups; quasimorphisms and stable commutator length; groups of outer automorphisms; and topological groups and their actions. The book will primarily be of interest to researchers and graduate students in geometric group theory, topology, category theory and functional analysis, but some parts will also be accessible to advanced undergraduates.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology
Author :
Publisher : University of Chicago Press
Total Pages : 262
Release :
ISBN-10 : 0226511839
ISBN-13 : 9780226511832
Rating : 4/5 (39 Downloads)

Book Synopsis A Concise Course in Algebraic Topology by : J. P. May

Download or read book A Concise Course in Algebraic Topology written by J. P. May and published by University of Chicago Press. This book was released on 1999-09 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Coarse Geometry and Randomness

Coarse Geometry and Randomness
Author :
Publisher : Springer
Total Pages : 133
Release :
ISBN-10 : 9783319025766
ISBN-13 : 3319025767
Rating : 4/5 (66 Downloads)

Book Synopsis Coarse Geometry and Randomness by : Itai Benjamini

Download or read book Coarse Geometry and Randomness written by Itai Benjamini and published by Springer. This book was released on 2013-12-02 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk. The study of the geometry of infinite vertex transitive graphs, and of Cayley graphs in particular, is fairly well developed. One goal of these notes is to point to some random metric spaces modeled by graphs that turn out to be somewhat exotic, that is, they admit a combination of properties not encountered in the vertex transitive world. These include percolation clusters on vertex transitive graphs, critical clusters, local and scaling limits of graphs, long range percolation, CCCP graphs obtained by contracting percolation clusters on graphs, and stationary random graphs, including the uniform infinite planar triangulation (UIPT) and the stochastic hyperbolic planar quadrangulation (SHIQ).