Characteristics Finite Element Methods in Computational Fluid Dynamics

Characteristics Finite Element Methods in Computational Fluid Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 744
Release :
ISBN-10 : 9783540453437
ISBN-13 : 3540453431
Rating : 4/5 (37 Downloads)

Book Synopsis Characteristics Finite Element Methods in Computational Fluid Dynamics by : Joe Iannelli

Download or read book Characteristics Finite Element Methods in Computational Fluid Dynamics written by Joe Iannelli and published by Springer Science & Business Media. This book was released on 2006-09-24 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations.

Finite Element Methods for Computational Fluid Dynamics

Finite Element Methods for Computational Fluid Dynamics
Author :
Publisher : SIAM
Total Pages : 321
Release :
ISBN-10 : 9781611973600
ISBN-13 : 1611973600
Rating : 4/5 (00 Downloads)

Book Synopsis Finite Element Methods for Computational Fluid Dynamics by : Dmitri Kuzmin

Download or read book Finite Element Methods for Computational Fluid Dynamics written by Dmitri Kuzmin and published by SIAM. This book was released on 2014-12-18 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This informal introduction to computational fluid dynamics and practical guide to numerical simulation of transport phenomena covers the derivation of the governing equations, construction of finite element approximations, and qualitative properties of numerical solutions, among other topics. To make the book accessible to readers with diverse interests and backgrounds, the authors begin at a basic level and advance to numerical tools for increasingly difficult flow problems, emphasizing practical implementation rather than mathematical theory.?Finite Element Methods for Computational Fluid Dynamics: A Practical Guide?explains the basics of the finite element method (FEM) in the context of simple model problems, illustrated by numerical examples. It comprehensively reviews stabilization techniques for convection-dominated transport problems, introducing the reader to streamline diffusion methods, Petrov?Galerkin approximations, Taylor?Galerkin schemes, flux-corrected transport algorithms, and other nonlinear high-resolution schemes, and covers Petrov?Galerkin stabilization, classical projection schemes, Schur complement solvers, and the implementation of the k-epsilon turbulence model in its presentation of the FEM for incompressible flow problem. The book also describes the open-source finite element library ELMER, which is recommended as a software development kit for advanced applications in an online component.?

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer
Author :
Publisher : Springer Science & Business Media
Total Pages : 587
Release :
ISBN-10 : 9781846282058
ISBN-13 : 1846282055
Rating : 4/5 (58 Downloads)

Book Synopsis Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer by : Ben Q. Li

Download or read book Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer written by Ben Q. Li and published by Springer Science & Business Media. This book was released on 2006-06-29 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.

Applied Computational Fluid Dynamics Techniques

Applied Computational Fluid Dynamics Techniques
Author :
Publisher : John Wiley & Sons
Total Pages : 544
Release :
ISBN-10 : 0470989661
ISBN-13 : 9780470989661
Rating : 4/5 (61 Downloads)

Book Synopsis Applied Computational Fluid Dynamics Techniques by : Rainald Löhner

Download or read book Applied Computational Fluid Dynamics Techniques written by Rainald Löhner and published by John Wiley & Sons. This book was released on 2008-04-30 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid dynamics (CFD) is concerned with the efficient numerical solution of the partial differential equations that describe fluid dynamics. CFD techniques are commonly used in the many areas of engineering where fluid behavior is an important factor. Traditional fields of application include aerospace and automotive design, and more recently, bioengineering and consumer and medical electronics. With Applied Computational Fluid Dynamics Techniques, 2nd edition, Rainald Löhner introduces the reader to the techniques required to achieve efficient CFD solvers, forming a bridge between basic theoretical and algorithmic aspects of the finite element method and its use in an industrial context where methods have to be both as simple but also as robust as possible. This heavily revised second edition takes a practice-oriented approach with a strong emphasis on efficiency, and offers important new and updated material on; Overlapping and embedded grid methods Treatment of free surfaces Grid generation Optimal use of supercomputing hardware Optimal shape and process design Applied Computational Fluid Dynamics Techniques, 2nd edition is a vital resource for engineers, researchers and designers working on CFD, aero and hydrodynamics simulations and bioengineering. Its unique practical approach will also appeal to graduate students of fluid mechanics and aero and hydrodynamics as well as biofluidics.

The Finite Volume Method in Computational Fluid Dynamics

The Finite Volume Method in Computational Fluid Dynamics
Author :
Publisher : Springer
Total Pages : 799
Release :
ISBN-10 : 9783319168746
ISBN-13 : 3319168746
Rating : 4/5 (46 Downloads)

Book Synopsis The Finite Volume Method in Computational Fluid Dynamics by : F. Moukalled

Download or read book The Finite Volume Method in Computational Fluid Dynamics written by F. Moukalled and published by Springer. This book was released on 2015-08-13 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

Finite Element Methods for Flow Problems

Finite Element Methods for Flow Problems
Author :
Publisher : John Wiley & Sons
Total Pages : 366
Release :
ISBN-10 : 0471496669
ISBN-13 : 9780471496663
Rating : 4/5 (69 Downloads)

Book Synopsis Finite Element Methods for Flow Problems by : Jean Donea

Download or read book Finite Element Methods for Flow Problems written by Jean Donea and published by John Wiley & Sons. This book was released on 2003-06-02 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die Finite-Elemente-Methode, eines der wichtigsten in der Technik verwendeten numerischen Näherungsverfahren, wird hier gründlich und gut verständlich, aber ohne ein Zuviel an mathematischem Formalismus abgehandelt. Insbesondere geht es um die Anwendung der Methode auf Strömungsprobleme. Alle wesentlichen aktuellen Forschungsergebnisse wurden in den Band aufgenommen; viele davon sind bisher nur verstreut in der Originalliteratur zu finden.

Finite Elements for Analysis and Design

Finite Elements for Analysis and Design
Author :
Publisher : Elsevier
Total Pages : 563
Release :
ISBN-10 : 9780080506470
ISBN-13 : 008050647X
Rating : 4/5 (70 Downloads)

Book Synopsis Finite Elements for Analysis and Design by : J. E. Akin

Download or read book Finite Elements for Analysis and Design written by J. E. Akin and published by Elsevier. This book was released on 2014-06-28 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material. - Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing - Basic theory has been added in the book, including worked examples to enable students to understand the concepts - Contains coverage of computational topics, including worked examples to enable students to understand concepts - Improved coverage of sensitivity analysis and computational fluid dynamics - Uses example applications to increase students' understanding - Includes a disk with the FORTRAN source for the programs cided in the text