Case Studies in Bayesian Statistical Modelling and Analysis

Case Studies in Bayesian Statistical Modelling and Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 0
Release :
ISBN-10 : 1119941822
ISBN-13 : 9781119941828
Rating : 4/5 (22 Downloads)

Book Synopsis Case Studies in Bayesian Statistical Modelling and Analysis by : Clair L. Alston

Download or read book Case Studies in Bayesian Statistical Modelling and Analysis written by Clair L. Alston and published by John Wiley & Sons. This book was released on 2012-12-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.

Case Studies in Bayesian Statistical Modelling and Analysis

Case Studies in Bayesian Statistical Modelling and Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 411
Release :
ISBN-10 : 9781118394328
ISBN-13 : 1118394321
Rating : 4/5 (28 Downloads)

Book Synopsis Case Studies in Bayesian Statistical Modelling and Analysis by : Clair L. Alston

Download or read book Case Studies in Bayesian Statistical Modelling and Analysis written by Clair L. Alston and published by John Wiley & Sons. This book was released on 2012-10-10 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.

Case Studies in Applied Bayesian Data Science

Case Studies in Applied Bayesian Data Science
Author :
Publisher : Springer Nature
Total Pages : 415
Release :
ISBN-10 : 9783030425531
ISBN-13 : 3030425533
Rating : 4/5 (31 Downloads)

Book Synopsis Case Studies in Applied Bayesian Data Science by : Kerrie L. Mengersen

Download or read book Case Studies in Applied Bayesian Data Science written by Kerrie L. Mengersen and published by Springer Nature. This book was released on 2020-05-28 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a range of substantive applied problems within Bayesian Statistics along with their Bayesian solutions, this book arises from a research program at CIRM in France in the second semester of 2018, which supported Kerrie Mengersen as a visiting Jean-Morlet Chair and Pierre Pudlo as the local Research Professor. The field of Bayesian statistics has exploded over the past thirty years and is now an established field of research in mathematical statistics and computer science, a key component of data science, and an underpinning methodology in many domains of science, business and social science. Moreover, while remaining naturally entwined, the three arms of Bayesian statistics, namely modelling, computation and inference, have grown into independent research fields. While the research arms of Bayesian statistics continue to grow in many directions, they are harnessed when attention turns to solving substantive applied problems. Each such problem set has its own challenges and hence draws from the suite of research a bespoke solution. The book will be useful for both theoretical and applied statisticians, as well as practitioners, to inspect these solutions in the context of the problems, in order to draw further understanding, awareness and inspiration.

Complex Data Modeling and Computationally Intensive Statistical Methods

Complex Data Modeling and Computationally Intensive Statistical Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 170
Release :
ISBN-10 : 9788847013865
ISBN-13 : 8847013860
Rating : 4/5 (65 Downloads)

Book Synopsis Complex Data Modeling and Computationally Intensive Statistical Methods by : Pietro Mantovan

Download or read book Complex Data Modeling and Computationally Intensive Statistical Methods written by Pietro Mantovan and published by Springer Science & Business Media. This book was released on 2011-01-27 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selected from the conference "S.Co.2009: Complex Data Modeling and Computationally Intensive Methods for Estimation and Prediction," these 20 papers cover the latest in statistical methods and computational techniques for complex and high dimensional datasets.

Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition
Author :
Publisher : CRC Press
Total Pages : 677
Release :
ISBN-10 : 9781439840955
ISBN-13 : 1439840954
Rating : 4/5 (55 Downloads)

Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Bayesian Statistical Methods

Bayesian Statistical Methods
Author :
Publisher : CRC Press
Total Pages : 288
Release :
ISBN-10 : 9780429510915
ISBN-13 : 0429510918
Rating : 4/5 (15 Downloads)

Book Synopsis Bayesian Statistical Methods by : Brian J. Reich

Download or read book Bayesian Statistical Methods written by Brian J. Reich and published by CRC Press. This book was released on 2019-04-12 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures. In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics: Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) Model-comparison and goodness-of-fit measures, including sensitivity to priors Frequentist properties of Bayesian methods Case studies covering advanced topics illustrate the flexibility of the Bayesian approach: Semiparametric regression Handling of missing data using predictive distributions Priors for high-dimensional regression models Computational techniques for large datasets Spatial data analysis The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are available on the book’s website. Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award. Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute.

Bayesian Analysis with Stata

Bayesian Analysis with Stata
Author :
Publisher :
Total Pages : 306
Release :
ISBN-10 : UCSD:31822039649512
ISBN-13 :
Rating : 4/5 (12 Downloads)

Book Synopsis Bayesian Analysis with Stata by : John Thompson

Download or read book Bayesian Analysis with Stata written by John Thompson and published by . This book was released on 2014-05-06 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Analysis with Stata is a compendium of Stata user-written commands for Bayesian analysis.