The Deep Learning Revolution

The Deep Learning Revolution
Author :
Publisher : MIT Press
Total Pages : 354
Release :
ISBN-10 : 9780262038034
ISBN-13 : 026203803X
Rating : 4/5 (34 Downloads)

Book Synopsis The Deep Learning Revolution by : Terrence J. Sejnowski

Download or read book The Deep Learning Revolution written by Terrence J. Sejnowski and published by MIT Press. This book was released on 2018-10-23 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: How deep learning—from Google Translate to driverless cars to personal cognitive assistants—is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.

Artificial Intelligence for Science

Artificial Intelligence for Science
Author :
Publisher : World Scientific Publishing Company
Total Pages : 0
Release :
ISBN-10 : 9811265666
ISBN-13 : 9789811265662
Rating : 4/5 (66 Downloads)

Book Synopsis Artificial Intelligence for Science by : Alok Nidhi Choudhary

Download or read book Artificial Intelligence for Science written by Alok Nidhi Choudhary and published by World Scientific Publishing Company. This book was released on 2022-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique collection introduces AI, Machine Learning (ML), and deep neural network technologies leading to scientific discovery from the datasets generated both by supercomputer simulation and by modern experimental facilities.Huge quantities of experimental data come from many sources -- telescopes, satellites, gene sequencers, accelerators, and electron microscopes, including international facilities such as the Large Hadron Collider (LHC) at CERN in Geneva and the ITER Tokamak in France. These sources generate many petabytes moving to exabytes of data per year. Extracting scientific insights from these data is a major challenge for scientists, for whom the latest AI developments will be essential.The timely handbook benefits professionals, researchers, academics, and students in all fields of science and engineering as well as AI, ML, and neural networks. Further, the vision evident in this book inspires all those who influence or are influenced by scientific progress.

Artificial Intuition

Artificial Intuition
Author :
Publisher : Createspace Independent Publishing Platform
Total Pages : 394
Release :
ISBN-10 : 1983895644
ISBN-13 : 9781983895647
Rating : 4/5 (44 Downloads)

Book Synopsis Artificial Intuition by : Carlos Perez

Download or read book Artificial Intuition written by Carlos Perez and published by Createspace Independent Publishing Platform. This book was released on 2018-01-15 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: I challenge you to find a field as interesting and exciting as Deep Learning. This book is a spin-off from my previous book "The Deep Learning AI Playbook." The Playbook was meant for a professional audience. This is targeted to a much wider audience. There are two kinds of audiences, those looking to explore and those looking to optimize. There are two ways to learn, learning by exploration and learning by exploitation. This book is about exploration into the emerging field of Deep Learning. It's more like a popular science book and less of a business book. It's not going to provide any practical advice of how to use or deploy Deep Learning. However, it's a book that will explore this new field in many more perspectives. So at the very least, you'll walk away with the ability to hold a very informative and impressive conversation about this unique subject. It's my hope that having less constraints on what I can express can lead to a more insightful and novel book. There are plenty of ideas that are either too general or too speculative to fit within a business oriented book. With a business book, you always want to manage expectations. Artificial Intelligence is one of those topics that you want to keep speaking in a conservative manner. That's one reason I felt the need for this book. Perhaps the freedom to be more liberal can give readers more ideas as where this field is heading. Also, it's not just business that needs to understand Deep Learning. We are all going to be profoundly impacted by this new kind of Artificial Intelligence and it is critical we all develop at least a good intuition of how it will change the world.The images in the front cover are all generated using Deep Learning technology.

Artificial Intelligence For Science: A Deep Learning Revolution

Artificial Intelligence For Science: A Deep Learning Revolution
Author :
Publisher : World Scientific
Total Pages : 803
Release :
ISBN-10 : 9789811265686
ISBN-13 : 9811265682
Rating : 4/5 (86 Downloads)

Book Synopsis Artificial Intelligence For Science: A Deep Learning Revolution by : Alok Choudhary

Download or read book Artificial Intelligence For Science: A Deep Learning Revolution written by Alok Choudhary and published by World Scientific. This book was released on 2023-03-21 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique collection introduces AI, Machine Learning (ML), and deep neural network technologies leading to scientific discovery from the datasets generated both by supercomputer simulation and by modern experimental facilities.Huge quantities of experimental data come from many sources — telescopes, satellites, gene sequencers, accelerators, and electron microscopes, including international facilities such as the Large Hadron Collider (LHC) at CERN in Geneva and the ITER Tokamak in France. These sources generate many petabytes moving to exabytes of data per year. Extracting scientific insights from these data is a major challenge for scientists, for whom the latest AI developments will be essential.The timely handbook benefits professionals, researchers, academics, and students in all fields of science and engineering as well as AI, ML, and neural networks. Further, the vision evident in this book inspires all those who influence or are influenced by scientific progress.

Deep Learning

Deep Learning
Author :
Publisher : MIT Press
Total Pages : 298
Release :
ISBN-10 : 9780262537551
ISBN-13 : 0262537559
Rating : 4/5 (51 Downloads)

Book Synopsis Deep Learning by : John D. Kelleher

Download or read book Deep Learning written by John D. Kelleher and published by MIT Press. This book was released on 2019-09-10 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.

Compassionate Artificial Intelligence

Compassionate Artificial Intelligence
Author :
Publisher : Compassionate AI Lab (An Imprint of Inner Light Publishers)
Total Pages : 161
Release :
ISBN-10 : 9789382123460
ISBN-13 : 9382123466
Rating : 4/5 (60 Downloads)

Book Synopsis Compassionate Artificial Intelligence by : Amit Ray

Download or read book Compassionate Artificial Intelligence written by Amit Ray and published by Compassionate AI Lab (An Imprint of Inner Light Publishers). This book was released on 2018-10-03 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book Dr. Amit Ray describes the principles, algorithms and frameworks for incorporating compassion, kindness and empathy in machine. This is a milestone book on Artificial Intelligence. Compassionate AI address the issues for creating solutions for some of the challenges the humanity is facing today, like the need for compassionate care-giving, helping physically and mentally challenged people, reducing human pain and diseases, stopping nuclear warfare, preventing mass destruction weapons, tackling terrorism and stopping the exploitation of innocent citizens by monster governments through digital surveillance. The book also talks about compassionate AI for precision medicine, new drug discovery, education, and legal system. Dr. Ray explained the DeepCompassion algorithms, five design principles and eleven key behavioral principle of compassionate AI systems. The book also explained several compassionate AI projects. Compassionate AI is the best practical guide for AI students, researchers, entrepreneurs, business leaders looking to get true value from the adoption of compassion in machine learning technology.

Probabilistic Machine Learning

Probabilistic Machine Learning
Author :
Publisher : MIT Press
Total Pages : 858
Release :
ISBN-10 : 9780262369305
ISBN-13 : 0262369303
Rating : 4/5 (05 Downloads)

Book Synopsis Probabilistic Machine Learning by : Kevin P. Murphy

Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2022-03-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.