Arithmetic of Higher-Dimensional Algebraic Varieties

Arithmetic of Higher-Dimensional Algebraic Varieties
Author :
Publisher : Springer Science & Business Media
Total Pages : 292
Release :
ISBN-10 : 9780817681708
ISBN-13 : 0817681701
Rating : 4/5 (08 Downloads)

Book Synopsis Arithmetic of Higher-Dimensional Algebraic Varieties by : Bjorn Poonen

Download or read book Arithmetic of Higher-Dimensional Algebraic Varieties written by Bjorn Poonen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.

Classification of Higher Dimensional Algebraic Varieties

Classification of Higher Dimensional Algebraic Varieties
Author :
Publisher : Springer Science & Business Media
Total Pages : 206
Release :
ISBN-10 : 9783034602907
ISBN-13 : 3034602901
Rating : 4/5 (07 Downloads)

Book Synopsis Classification of Higher Dimensional Algebraic Varieties by : Christopher D. Hacon

Download or read book Classification of Higher Dimensional Algebraic Varieties written by Christopher D. Hacon and published by Springer Science & Business Media. This book was released on 2011-02-02 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.

The Geometry of some special Arithmetic Quotients

The Geometry of some special Arithmetic Quotients
Author :
Publisher : Springer
Total Pages : 347
Release :
ISBN-10 : 9783540699972
ISBN-13 : 354069997X
Rating : 4/5 (72 Downloads)

Book Synopsis The Geometry of some special Arithmetic Quotients by : Bruce Hunt

Download or read book The Geometry of some special Arithmetic Quotients written by Bruce Hunt and published by Springer. This book was released on 2006-11-14 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses a series of higher-dimensional moduli spaces, of abelian varieties, cubic and K3 surfaces, which have embeddings in projective spaces as very special algebraic varieties. Many of these were known classically, but in the last chapter a new such variety, a quintic fourfold, is introduced and studied. The text will be of interest to all involved in the study of moduli spaces with symmetries, and contains in addition a wealth of material which has been only accessible in very old sources, including a detailed presentation of the solution of the equation of 27th degree for the lines on a cubic surface.

Geometry of Higher Dimensional Algebraic Varieties

Geometry of Higher Dimensional Algebraic Varieties
Author :
Publisher : Birkhäuser
Total Pages : 221
Release :
ISBN-10 : 9783034888936
ISBN-13 : 3034888937
Rating : 4/5 (36 Downloads)

Book Synopsis Geometry of Higher Dimensional Algebraic Varieties by : Thomas Peternell

Download or read book Geometry of Higher Dimensional Algebraic Varieties written by Thomas Peternell and published by Birkhäuser. This book was released on 2012-12-06 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the sub ject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply ex plain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsin stitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T.

Arithmetic of Higher-dimensional Algebraic Varieties

Arithmetic of Higher-dimensional Algebraic Varieties
Author :
Publisher :
Total Pages : 287
Release :
ISBN-10 : 376433259X
ISBN-13 : 9783764332594
Rating : 4/5 (9X Downloads)

Book Synopsis Arithmetic of Higher-dimensional Algebraic Varieties by : Bjorn Poonen

Download or read book Arithmetic of Higher-dimensional Algebraic Varieties written by Bjorn Poonen and published by . This book was released on 2004 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Birational Geometry, Rational Curves, and Arithmetic

Birational Geometry, Rational Curves, and Arithmetic
Author :
Publisher : Springer Science & Business Media
Total Pages : 324
Release :
ISBN-10 : 9781461464822
ISBN-13 : 146146482X
Rating : 4/5 (22 Downloads)

Book Synopsis Birational Geometry, Rational Curves, and Arithmetic by : Fedor Bogomolov

Download or read book Birational Geometry, Rational Curves, and Arithmetic written by Fedor Bogomolov and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​​​​This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.

Algebraic Geometry

Algebraic Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 511
Release :
ISBN-10 : 9781475738490
ISBN-13 : 1475738498
Rating : 4/5 (90 Downloads)

Book Synopsis Algebraic Geometry by : Robin Hartshorne

Download or read book Algebraic Geometry written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.