An Introduction to Proofs with Set Theory

An Introduction to Proofs with Set Theory
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 251
Release :
ISBN-10 : 9781681738802
ISBN-13 : 1681738805
Rating : 4/5 (02 Downloads)

Book Synopsis An Introduction to Proofs with Set Theory by : Daniel Ashlock

Download or read book An Introduction to Proofs with Set Theory written by Daniel Ashlock and published by Morgan & Claypool Publishers. This book was released on 2020-06-24 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid's algorithm. Chapter 9 is an introduction to combinatorics; topics included are combinatorial proofs, binomial and multinomial coefficients, the Inclusion-Exclusion principle, and counting the number of surjective functions between finite sets. Chapter 10 introduces relations and covers equivalence relations and partial orders. Chapter 11 covers number bases, number systems, and operations. Chapter 12 covers cardinality, including basic results on countable and uncountable infinities, and introduces cardinal numbers. Chapter 13 expands on partial orders and introduces ordinal numbers. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. This chapter also includes Cantor's Paradox, Russel's Paradox, a discussion of axiomatic theories, an exposition on Zermelo‒Fraenkel Set Theory with the Axiom of Choice, and a brief explanation of Gödel's Incompleteness Theorems.

An Introduction to Proof Theory

An Introduction to Proof Theory
Author :
Publisher : Oxford University Press
Total Pages : 336
Release :
ISBN-10 : 9780192649294
ISBN-13 : 0192649299
Rating : 4/5 (94 Downloads)

Book Synopsis An Introduction to Proof Theory by : Paolo Mancosu

Download or read book An Introduction to Proof Theory written by Paolo Mancosu and published by Oxford University Press. This book was released on 2021-08-12 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.

Proofs from THE BOOK

Proofs from THE BOOK
Author :
Publisher : Springer Science & Business Media
Total Pages : 194
Release :
ISBN-10 : 9783662223437
ISBN-13 : 3662223430
Rating : 4/5 (37 Downloads)

Book Synopsis Proofs from THE BOOK by : Martin Aigner

Download or read book Proofs from THE BOOK written by Martin Aigner and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.

Book of Proof

Book of Proof
Author :
Publisher :
Total Pages : 314
Release :
ISBN-10 : 0989472116
ISBN-13 : 9780989472111
Rating : 4/5 (16 Downloads)

Book Synopsis Book of Proof by : Richard H. Hammack

Download or read book Book of Proof written by Richard H. Hammack and published by . This book was released on 2016-01-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

An Introduction to Mathematical Proofs

An Introduction to Mathematical Proofs
Author :
Publisher : CRC Press
Total Pages : 483
Release :
ISBN-10 : 9781000709803
ISBN-13 : 1000709809
Rating : 4/5 (03 Downloads)

Book Synopsis An Introduction to Mathematical Proofs by : Nicholas A. Loehr

Download or read book An Introduction to Mathematical Proofs written by Nicholas A. Loehr and published by CRC Press. This book was released on 2019-11-20 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Mathematical Proofs presents fundamental material on logic, proof methods, set theory, number theory, relations, functions, cardinality, and the real number system. The text uses a methodical, detailed, and highly structured approach to proof techniques and related topics. No prerequisites are needed beyond high-school algebra. New material is presented in small chunks that are easy for beginners to digest. The author offers a friendly style without sacrificing mathematical rigor. Ideas are developed through motivating examples, precise definitions, carefully stated theorems, clear proofs, and a continual review of preceding topics. Features Study aids including section summaries and over 1100 exercises Careful coverage of individual proof-writing skills Proof annotations and structural outlines clarify tricky steps in proofs Thorough treatment of multiple quantifiers and their role in proofs Unified explanation of recursive definitions and induction proofs, with applications to greatest common divisors and prime factorizations About the Author: Nicholas A. Loehr is an associate professor of mathematics at Virginia Technical University. He has taught at College of William and Mary, United States Naval Academy, and University of Pennsylvania. He has won many teaching awards at three different schools. He has published over 50 journal articles. He also authored three other books for CRC Press, including Combinatorics, Second Edition, and Advanced Linear Algebra.

Write Your Own Proofs

Write Your Own Proofs
Author :
Publisher : Courier Dover Publications
Total Pages : 257
Release :
ISBN-10 : 9780486832814
ISBN-13 : 0486832813
Rating : 4/5 (14 Downloads)

Book Synopsis Write Your Own Proofs by : Amy Babich

Download or read book Write Your Own Proofs written by Amy Babich and published by Courier Dover Publications. This book was released on 2019-08-14 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a pair of math teachers and based on their classroom notes and experiences, this introductory treatment of theory, proof techniques, and related concepts is designed for undergraduate courses. No knowledge of calculus is assumed, making it a useful text for students at many levels. The focus is on teaching students to prove theorems and write mathematical proofs so that others can read them. Since proving theorems takes lots of practice, this text is designed to provide plenty of exercises. The authors break the theorems into pieces and walk readers through examples, encouraging them to use mathematical notation and write proofs themselves. Topics include propositional logic, set notation, basic set theory proofs, relations, functions, induction, countability, and some combinatorics, including a small amount of probability. The text is ideal for courses in discrete mathematics or logic and set theory, and its accessibility makes the book equally suitable for classes in mathematics for liberal arts students or courses geared toward proof writing in mathematics.

Introduction to the Theory of Sets

Introduction to the Theory of Sets
Author :
Publisher : Courier Corporation
Total Pages : 130
Release :
ISBN-10 : 9780486154879
ISBN-13 : 0486154874
Rating : 4/5 (79 Downloads)

Book Synopsis Introduction to the Theory of Sets by : Joseph Breuer

Download or read book Introduction to the Theory of Sets written by Joseph Breuer and published by Courier Corporation. This book was released on 2012-08-09 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate text develops its subject through observations of the physical world, covering finite sets, cardinal numbers, infinite cardinals, and ordinals. Includes exercises with answers. 1958 edition.