An Introduction to Matrix Concentration Inequalities

An Introduction to Matrix Concentration Inequalities
Author :
Publisher :
Total Pages : 256
Release :
ISBN-10 : 1601988389
ISBN-13 : 9781601988386
Rating : 4/5 (89 Downloads)

Book Synopsis An Introduction to Matrix Concentration Inequalities by : Joel Tropp

Download or read book An Introduction to Matrix Concentration Inequalities written by Joel Tropp and published by . This book was released on 2015-05-27 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. It is therefore desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that achieve all of these goals. This monograph offers an invitation to the field of matrix concentration inequalities. It begins with some history of random matrix theory; it describes a flexible model for random matrices that is suitable for many problems; and it discusses the most important matrix concentration results. To demonstrate the value of these techniques, the presentation includes examples drawn from statistics, machine learning, optimization, combinatorics, algorithms, scientific computing, and beyond.

Concentration Inequalities

Concentration Inequalities
Author :
Publisher : Oxford University Press
Total Pages : 492
Release :
ISBN-10 : 9780199535255
ISBN-13 : 0199535256
Rating : 4/5 (55 Downloads)

Book Synopsis Concentration Inequalities by : Stéphane Boucheron

Download or read book Concentration Inequalities written by Stéphane Boucheron and published by Oxford University Press. This book was released on 2013-02-07 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the interplay between the probabilistic structure (independence) and a variety of tools ranging from functional inequalities to transportation arguments to information theory. Applications to the study of empirical processes, random projections, random matrix theory, and threshold phenomena are also presented.

An Introduction to Matrix Concentration Inequalities

An Introduction to Matrix Concentration Inequalities
Author :
Publisher :
Total Pages : 230
Release :
ISBN-10 : 1601988397
ISBN-13 : 9781601988393
Rating : 4/5 (97 Downloads)

Book Synopsis An Introduction to Matrix Concentration Inequalities by : Joel Aaron Tropp

Download or read book An Introduction to Matrix Concentration Inequalities written by Joel Aaron Tropp and published by . This book was released on 2015 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. Therefore, it is desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that achieve all of these goals. This monograph offers an invitation to the field of matrix concentration inequalities. It begins with some history of random matrix theory; it describes a flexible model for random matrices that is suitable for many problems; and it discusses the most important matrix concentration results. To demonstrate the value of these techniques, the presentation includes examples drawn from statistics, machine learning, optimization, combinatorics, algorithms, scientific computing, and beyond.

An Introduction to Random Matrices

An Introduction to Random Matrices
Author :
Publisher : Cambridge University Press
Total Pages : 507
Release :
ISBN-10 : 9780521194525
ISBN-13 : 0521194520
Rating : 4/5 (25 Downloads)

Book Synopsis An Introduction to Random Matrices by : Greg W. Anderson

Download or read book An Introduction to Random Matrices written by Greg W. Anderson and published by Cambridge University Press. This book was released on 2010 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.

High-Dimensional Probability

High-Dimensional Probability
Author :
Publisher : Cambridge University Press
Total Pages : 299
Release :
ISBN-10 : 9781108415194
ISBN-13 : 1108415199
Rating : 4/5 (94 Downloads)

Book Synopsis High-Dimensional Probability by : Roman Vershynin

Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Large random matrices

Large random matrices
Author :
Publisher : Springer Science & Business Media
Total Pages : 296
Release :
ISBN-10 : 9783540698968
ISBN-13 : 3540698965
Rating : 4/5 (68 Downloads)

Book Synopsis Large random matrices by : Alice Guionnet

Download or read book Large random matrices written by Alice Guionnet and published by Springer Science & Business Media. This book was released on 2009-03-25 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lectures emphasize the relation between the problem of enumerating complicated graphs and the related large deviations questions. Such questions are closely related with the asymptotic distribution of matrices.

The Random Matrix Theory of the Classical Compact Groups

The Random Matrix Theory of the Classical Compact Groups
Author :
Publisher : Cambridge University Press
Total Pages : 225
Release :
ISBN-10 : 9781108317993
ISBN-13 : 1108317995
Rating : 4/5 (93 Downloads)

Book Synopsis The Random Matrix Theory of the Classical Compact Groups by : Elizabeth S. Meckes

Download or read book The Random Matrix Theory of the Classical Compact Groups written by Elizabeth S. Meckes and published by Cambridge University Press. This book was released on 2019-08-01 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.