An Introduction to Fourier Analysis

An Introduction to Fourier Analysis
Author :
Publisher : CRC Press
Total Pages : 402
Release :
ISBN-10 : 9781498773713
ISBN-13 : 1498773710
Rating : 4/5 (13 Downloads)

Book Synopsis An Introduction to Fourier Analysis by : Russell L. Herman

Download or read book An Introduction to Fourier Analysis written by Russell L. Herman and published by CRC Press. This book was released on 2016-09-19 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: • Convergence and summation of infinite series • Representation of functions by infinite series • Trigonometric and Generalized Fourier series • Legendre, Bessel, gamma, and delta functions • Complex numbers and functions • Analytic functions and integration in the complex plane • Fourier and Laplace transforms. • The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.

Fourier Analysis

Fourier Analysis
Author :
Publisher : Princeton University Press
Total Pages : 326
Release :
ISBN-10 : 9781400831234
ISBN-13 : 1400831237
Rating : 4/5 (34 Downloads)

Book Synopsis Fourier Analysis by : Elias M. Stein

Download or read book Fourier Analysis written by Elias M. Stein and published by Princeton University Press. This book was released on 2011-02-11 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32

Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32
Author :
Publisher : Princeton University Press
Total Pages : 312
Release :
ISBN-10 : 9781400883899
ISBN-13 : 140088389X
Rating : 4/5 (99 Downloads)

Book Synopsis Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32 by : Elias M. Stein

Download or read book Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32 written by Elias M. Stein and published by Princeton University Press. This book was released on 2016-06-02 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.

Introduction to Fourier Analysis and Wavelets

Introduction to Fourier Analysis and Wavelets
Author :
Publisher : American Mathematical Soc.
Total Pages : 398
Release :
ISBN-10 : 9780821847978
ISBN-13 : 082184797X
Rating : 4/5 (78 Downloads)

Book Synopsis Introduction to Fourier Analysis and Wavelets by : Mark A. Pinsky

Download or read book Introduction to Fourier Analysis and Wavelets written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2008 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides a concrete introduction to a number of topics in harmonic analysis, accessible at the early graduate level or, in some cases, at an upper undergraduate level. It contains numerous examples and more than 200 exercises, each located in close proximity to the related theoretical material.

Fourier Series and Integrals

Fourier Series and Integrals
Author :
Publisher :
Total Pages : 312
Release :
ISBN-10 : MINN:31951000508928G
ISBN-13 :
Rating : 4/5 (8G Downloads)

Book Synopsis Fourier Series and Integrals by : Harry Dym

Download or read book Fourier Series and Integrals written by Harry Dym and published by . This book was released on 1972 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:

An Introduction to Fourier Series and Integrals

An Introduction to Fourier Series and Integrals
Author :
Publisher : Courier Corporation
Total Pages : 116
Release :
ISBN-10 : 9780486151793
ISBN-13 : 0486151794
Rating : 4/5 (93 Downloads)

Book Synopsis An Introduction to Fourier Series and Integrals by : Robert T. Seeley

Download or read book An Introduction to Fourier Series and Integrals written by Robert T. Seeley and published by Courier Corporation. This book was released on 2014-02-20 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compact, sophomore-to-senior-level guide, Dr. Seeley's text introduces Fourier series in the way that Joseph Fourier himself used them: as solutions of the heat equation in a disk. Emphasizing the relationship between physics and mathematics, Dr. Seeley focuses on results of greatest significance to modern readers. Starting with a physical problem, Dr. Seeley sets up and analyzes the mathematical modes, establishes the principal properties, and then proceeds to apply these results and methods to new situations. The chapter on Fourier transforms derives analogs of the results obtained for Fourier series, which the author applies to the analysis of a problem of heat conduction. Numerous computational and theoretical problems appear throughout the text.

An Introduction to Fourier Analysis and Generalised Functions

An Introduction to Fourier Analysis and Generalised Functions
Author :
Publisher :
Total Pages : 96
Release :
ISBN-10 : UCSD:31822013847835
ISBN-13 :
Rating : 4/5 (35 Downloads)

Book Synopsis An Introduction to Fourier Analysis and Generalised Functions by : M. J. Lighthill

Download or read book An Introduction to Fourier Analysis and Generalised Functions written by M. J. Lighthill and published by . This book was released on 1958 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Clearly and attractively written, but without any deviation from rigorous standards of mathematical proof...." Science Progress