Advances in Subsurface Data Analytics

Advances in Subsurface Data Analytics
Author :
Publisher : Elsevier
Total Pages : 378
Release :
ISBN-10 : 9780128223086
ISBN-13 : 0128223081
Rating : 4/5 (86 Downloads)

Book Synopsis Advances in Subsurface Data Analytics by : Shuvajit Bhattacharya

Download or read book Advances in Subsurface Data Analytics written by Shuvajit Bhattacharya and published by Elsevier. This book was released on 2022-05-18 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches brings together the fundamentals of popular and emerging machine learning (ML) algorithms with their applications in subsurface analysis, including geology, geophysics, petrophysics, and reservoir engineering. The book is divided into four parts: traditional ML, deep learning, physics-based ML, and new directions, with an increasing level of diversity and complexity of topics. Each chapter focuses on one ML algorithm with a detailed workflow for a specific application in geosciences. Some chapters also compare the results from an algorithm with others to better equip the readers with different strategies to implement automated workflows for subsurface analysis. Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches will help researchers in academia and professional geoscientists working on the subsurface-related problems (oil and gas, geothermal, carbon sequestration, and seismology) at different scales to understand and appreciate current trends in ML approaches, their applications, advances and limitations, and future potential in geosciences by bringing together several contributions in a single volume. - Covers fundamentals of simple machine learning and deep learning algorithms, and physics-based approaches written by practitioners in academia and industry - Presents detailed case studies of individual machine learning algorithms and optimal strategies in subsurface characterization around the world - Offers an analysis of future trends in machine learning in geosciences

Data Science and Machine Learning Applications in Subsurface Engineering

Data Science and Machine Learning Applications in Subsurface Engineering
Author :
Publisher : CRC Press
Total Pages : 368
Release :
ISBN-10 : 9781003860228
ISBN-13 : 1003860222
Rating : 4/5 (28 Downloads)

Book Synopsis Data Science and Machine Learning Applications in Subsurface Engineering by : Daniel Asante Otchere

Download or read book Data Science and Machine Learning Applications in Subsurface Engineering written by Daniel Asante Otchere and published by CRC Press. This book was released on 2024-02-06 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers unsupervised learning, supervised learning, clustering approaches, feature engineering, explainable AI and multioutput regression models for subsurface engineering problems. Processing voluminous and complex data sets are the primary focus of the field of machine learning (ML). ML aims to develop data-driven methods and computational algorithms that can learn to identify complex and non-linear patterns to understand and predict the relationships between variables by analysing extensive data. Although ML models provide the final output for predictions, several steps need to be performed to achieve accurate predictions. These steps, data pre-processing, feature selection, feature engineering and outlier removal, are all contained in this book. New models are also developed using existing ML architecture and learning theories to improve the performance of traditional ML models and handle small and big data without manual adjustments. This research-oriented book will help subsurface engineers, geophysicists, and geoscientists become familiar with data science and ML advances relevant to subsurface engineering. Additionally, it demonstrates the use of data-driven approaches for salt identification, seismic interpretation, estimating enhanced oil recovery factor, predicting pore fluid types, petrophysical property prediction, estimating pressure drop in pipelines, bubble point pressure prediction, enhancing drilling mud loss, smart well completion and synthetic well log predictions.

Machine Learning for Subsurface Characterization

Machine Learning for Subsurface Characterization
Author :
Publisher : Gulf Professional Publishing
Total Pages : 442
Release :
ISBN-10 : 9780128177372
ISBN-13 : 0128177373
Rating : 4/5 (72 Downloads)

Book Synopsis Machine Learning for Subsurface Characterization by : Siddharth Misra

Download or read book Machine Learning for Subsurface Characterization written by Siddharth Misra and published by Gulf Professional Publishing. This book was released on 2019-10-12 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning for Subsurface Characterization develops and applies neural networks, random forests, deep learning, unsupervised learning, Bayesian frameworks, and clustering methods for subsurface characterization. Machine learning (ML) focusses on developing computational methods/algorithms that learn to recognize patterns and quantify functional relationships by processing large data sets, also referred to as the "big data." Deep learning (DL) is a subset of machine learning that processes "big data" to construct numerous layers of abstraction to accomplish the learning task. DL methods do not require the manual step of extracting/engineering features; however, it requires us to provide large amounts of data along with high-performance computing to obtain reliable results in a timely manner. This reference helps the engineers, geophysicists, and geoscientists get familiar with data science and analytics terminology relevant to subsurface characterization and demonstrates the use of data-driven methods for outlier detection, geomechanical/electromagnetic characterization, image analysis, fluid saturation estimation, and pore-scale characterization in the subsurface. - Learn from 13 practical case studies using field, laboratory, and simulation data - Become knowledgeable with data science and analytics terminology relevant to subsurface characterization - Learn frameworks, concepts, and methods important for the engineer's and geoscientist's toolbox needed to support

Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition

Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition
Author :
Publisher : Elsevier
Total Pages : 517
Release :
ISBN-10 : 9780443240119
ISBN-13 : 0443240116
Rating : 4/5 (19 Downloads)

Book Synopsis Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition by : Mohammadali Ahmadi

Download or read book Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition written by Mohammadali Ahmadi and published by Elsevier. This book was released on 2024-07-13 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition: Case Studies and Code Examples presents a package for academic researchers and industries working on water resources and carbon capture and storage. This book contains fundamental knowledge on artificial intelligence related to oil and gas sustainability and the industry's pivot to support the energy transition and provides practical applications through case studies and coding flowcharts, addressing gaps and questions raised by academic and industrial partners, including energy engineers, geologists, and environmental scientists. This timely publication provides fundamental and extensive information on advanced AI applications geared to support sustainability and the energy transition for the oil and gas industry. - Reviews the use and applications of AI in energy transition of the oil and gas sectors - Provides fundamental knowledge and academic background of artificial intelligence, including practical applications with real-world examples and coding flowcharts - Showcases the successful implementation of AI in the industry (including geothermal energy)

Advances in Terrestrial Drilling:

Advances in Terrestrial Drilling:
Author :
Publisher : CRC Press
Total Pages : 310
Release :
ISBN-10 : 9781000328424
ISBN-13 : 1000328422
Rating : 4/5 (24 Downloads)

Book Synopsis Advances in Terrestrial Drilling: by : Yoseph Bar-Cohen

Download or read book Advances in Terrestrial Drilling: written by Yoseph Bar-Cohen and published by CRC Press. This book was released on 2020-12-21 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Terrestrial Drilling: Ground, Ice, and Underwater includes the latest drilling and excavation principles and processes for terrestrial environments. The chapters cover the history of drilling and excavation, drill types, drilling techniques and their advantages and associated issues, rock coring including acquisition, damage control, caching and transport, and data interpretation, as well as unconsolidated soil drilling and borehole stability. This book includes a description of the basic science of the drilling process, associated processes of breaking and penetrating various media, the required hardware, and the process of excavation and analysis of the sampled media. Describes recent advances in terrestrial drilling. Discusses drilling in the broadest range of media including terrestrial surfaces, ice and underwater from shallow penetration to very deep. Provides an in-depth description of key drilling techniques and the unified approach to assessing the required tools for given drilling requirements. Discusses environmental effects on drilling, current challenges of drilling and excavation, and methods that are used to address these. Examines novel drilling and excavation approaches. Dr. Yoseph Bar-Cohen is the Supervisor of the Electroactive Technologies Group (http://ndeaa.jpl.nasa.gov/) and a Senior Research Scientist at the Jet Propulsion Lab/Caltech, Pasadena, CA. His research is focused on electro-mechanics including planetary sample handling mechanisms, novel actuators that are driven by such materials as piezoelectric and EAP (also known as artificial muscles), and biomimetics. Dr. Kris Zacny is a Senior Scientist and Vice President of Exploration Systems at Honeybee Robotics, Altadena, CA. His expertise includes space mining, sample handling, soil and rock mechanics, extraterrestrial drilling, and In Situ Resource Utilization (ISRU).

Preparatory Excavation Works in Mines (Volume I)

Preparatory Excavation Works in Mines (Volume I)
Author :
Publisher : Prof. Dr. Bilal Semih Bozdemir
Total Pages : 502
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Preparatory Excavation Works in Mines (Volume I) by : Prof. Dr. Bilal Semih Bozdemir

Download or read book Preparatory Excavation Works in Mines (Volume I) written by Prof. Dr. Bilal Semih Bozdemir and published by Prof. Dr. Bilal Semih Bozdemir. This book was released on with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methodology: The project utilized down-the-hole (DTH) drilling techniques due to the steep slopes and limited access to machinery. Blast designs were customized to ensure stability while avoiding excessive disturbance to the surrounding environment. A combination of emulsion and water-gel explosives was used to ensure safety and effectiveness in the challenging conditions. Challenges: One of the most prominent challenges was the unpredictability of rock conditions, which necessitated ongoing assessments and adjustments to the drilling and blasting parameters. Furthermore, the environmental protocol required strict adherence to minimize impact on local fauna and flora. Results: The successful completion of the pipeline installation not only fulfilled the project timeline but also maintained compliance with environmental standards. This case underscores the necessity of adaptive management strategies in drilling and blasting, particularly in sensitive environments where both safety and ecological considerations are paramount.

Machine Learning Applications in Subsurface Energy Resource Management

Machine Learning Applications in Subsurface Energy Resource Management
Author :
Publisher : CRC Press
Total Pages : 379
Release :
ISBN-10 : 9781000823875
ISBN-13 : 1000823873
Rating : 4/5 (75 Downloads)

Book Synopsis Machine Learning Applications in Subsurface Energy Resource Management by : Srikanta Mishra

Download or read book Machine Learning Applications in Subsurface Energy Resource Management written by Srikanta Mishra and published by CRC Press. This book was released on 2022-12-27 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of machine learning (ML) techniques to understand hidden patterns and build data-driven predictive models from complex multivariate datasets is rapidly increasing in many applied science and engineering disciplines, including geo-energy. Motivated by these developments, Machine Learning Applications in Subsurface Energy Resource Management presents a current snapshot of the state of the art and future outlook for ML applications to manage subsurface energy resources (e.g., oil and gas, geologic carbon sequestration, and geothermal energy). Covers ML applications across multiple application domains (reservoir characterization, drilling, production, reservoir modeling, and predictive maintenance) Offers a variety of perspectives from authors representing operating companies, universities, and research organizations Provides an array of case studies illustrating the latest applications of several ML techniques Includes a literature review and future outlook for each application domain This book is targeted at practicing petroleum engineers or geoscientists interested in developing a broad understanding of ML applications across several subsurface domains. It is also aimed as a supplementary reading for graduate-level courses and will also appeal to professionals and researchers working with hydrogeology and nuclear waste disposal.