Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images

Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Author :
Publisher : MDPI
Total Pages : 438
Release :
ISBN-10 : 9783036509860
ISBN-13 : 3036509860
Rating : 4/5 (60 Downloads)

Book Synopsis Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images by : Yakoub Bazi

Download or read book Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images written by Yakoub Bazi and published by MDPI. This book was released on 2021-06-15 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.

Hyperspectral Image Analysis

Hyperspectral Image Analysis
Author :
Publisher : Springer Nature
Total Pages : 464
Release :
ISBN-10 : 9783030386177
ISBN-13 : 3030386171
Rating : 4/5 (77 Downloads)

Book Synopsis Hyperspectral Image Analysis by : Saurabh Prasad

Download or read book Hyperspectral Image Analysis written by Saurabh Prasad and published by Springer Nature. This book was released on 2020-04-27 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.

Deep Learning for the Earth Sciences

Deep Learning for the Earth Sciences
Author :
Publisher : John Wiley & Sons
Total Pages : 436
Release :
ISBN-10 : 9781119646167
ISBN-13 : 1119646162
Rating : 4/5 (67 Downloads)

Book Synopsis Deep Learning for the Earth Sciences by : Gustau Camps-Valls

Download or read book Deep Learning for the Earth Sciences written by Gustau Camps-Valls and published by John Wiley & Sons. This book was released on 2021-08-18 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.

Smart Systems: Innovations in Computing

Smart Systems: Innovations in Computing
Author :
Publisher : Springer Nature
Total Pages : 808
Release :
ISBN-10 : 9789819736904
ISBN-13 : 9819736900
Rating : 4/5 (04 Downloads)

Book Synopsis Smart Systems: Innovations in Computing by : Arun K. Somani

Download or read book Smart Systems: Innovations in Computing written by Arun K. Somani and published by Springer Nature. This book was released on with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Deep Learning for Hyperspectral Image Analysis and Classification

Deep Learning for Hyperspectral Image Analysis and Classification
Author :
Publisher : Springer Nature
Total Pages : 207
Release :
ISBN-10 : 9789813344204
ISBN-13 : 9813344202
Rating : 4/5 (04 Downloads)

Book Synopsis Deep Learning for Hyperspectral Image Analysis and Classification by : Linmi Tao

Download or read book Deep Learning for Hyperspectral Image Analysis and Classification written by Linmi Tao and published by Springer Nature. This book was released on 2021-02-20 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly. This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.

Comprehensive Remote Sensing

Comprehensive Remote Sensing
Author :
Publisher : Elsevier
Total Pages : 3183
Release :
ISBN-10 : 9780128032213
ISBN-13 : 0128032219
Rating : 4/5 (13 Downloads)

Book Synopsis Comprehensive Remote Sensing by : Shunlin Liang

Download or read book Comprehensive Remote Sensing written by Shunlin Liang and published by Elsevier. This book was released on 2017-11-08 with total page 3183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Remote Sensing, Nine Volume Set covers all aspects of the topic, with each volume edited by well-known scientists and contributed to by frontier researchers. It is a comprehensive resource that will benefit both students and researchers who want to further their understanding in this discipline. The field of remote sensing has quadrupled in size in the past two decades, and increasingly draws in individuals working in a diverse set of disciplines ranging from geographers, oceanographers, and meteorologists, to physicists and computer scientists. Researchers from a variety of backgrounds are now accessing remote sensing data, creating an urgent need for a one-stop reference work that can comprehensively document the development of remote sensing, from the basic principles, modeling and practical algorithms, to various applications. Fully comprehensive coverage of this rapidly growing discipline, giving readers a detailed overview of all aspects of Remote Sensing principles and applications Contains ‘Layered content’, with each article beginning with the basics and then moving on to more complex concepts Ideal for advanced undergraduates and academic researchers Includes case studies that illustrate the practical application of remote sensing principles, further enhancing understanding

Computer Vision and Machine Intelligence for Renewable Energy Systems

Computer Vision and Machine Intelligence for Renewable Energy Systems
Author :
Publisher : Elsevier
Total Pages : 389
Release :
ISBN-10 : 9780443289484
ISBN-13 : 0443289484
Rating : 4/5 (84 Downloads)

Book Synopsis Computer Vision and Machine Intelligence for Renewable Energy Systems by : Ashutosh Kumar Dubey

Download or read book Computer Vision and Machine Intelligence for Renewable Energy Systems written by Ashutosh Kumar Dubey and published by Elsevier. This book was released on 2024-09-20 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer Vision and Machine Intelligence for Renewable Energy Systems offers a practical, systemic guide to the use of computer vision as an innovative tool to support renewable energy integration.This book equips readers with a variety of essential tools and applications: Part I outlines the fundamentals of computer vision and its unique benefits in renewable energy system models compared to traditional machine intelligence: minimal computing power needs, speed, and accuracy even with partial data. Part II breaks down specific techniques, including those for predictive modeling, performance prediction, market models, and mitigation measures. Part III offers case studies and applications to a wide range of renewable energy sources, and finally the future possibilities of the technology are considered. The very first book in Elsevier's cutting-edge new series Advances in Intelligent Energy Systems, Computer Vision and Machine Intelligence for Renewable Energy Systems provides engineers and renewable energy researchers with a holistic, clear introduction to this promising strategy for control and reliability in renewable energy grids. - Provides a sorely needed primer on the opportunities of computer vision techniques for renewable energy systems - Builds knowledge and tools in a systematic manner, from fundamentals to advanced applications - Includes dedicated chapters with case studies and applications for each sustainable energy source