A Transition to Advanced Mathematics

A Transition to Advanced Mathematics
Author :
Publisher : Cengage Learning
Total Pages : 416
Release :
ISBN-10 : 0495562025
ISBN-13 : 9780495562023
Rating : 4/5 (25 Downloads)

Book Synopsis A Transition to Advanced Mathematics by : Douglas Smith

Download or read book A Transition to Advanced Mathematics written by Douglas Smith and published by Cengage Learning. This book was released on 2010-06-01 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: A TRANSITION TO ADVANCED MATHEMATICS helps students make the transition from calculus to more proofs-oriented mathematical study. The most successful text of its kind, the 7th edition continues to provide a firm foundation in major concepts needed for continued study and guides students to think and express themselves mathematically to analyze a situation, extract pertinent facts, and draw appropriate conclusions. The authors place continuous emphasis throughout on improving students' ability to read and write proofs, and on developing their critical awareness for spotting common errors in proofs. Concepts are clearly explained and supported with detailed examples, while abundant and diverse exercises provide thorough practice on both routine and more challenging problems. Students will come away with a solid intuition for the types of mathematical reasoning they'll need to apply in later courses and a better understanding of how mathematicians of all kinds approach and solve problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Mathematical Proofs

Mathematical Proofs
Author :
Publisher : Pearson
Total Pages : 0
Release :
ISBN-10 : 0321797094
ISBN-13 : 9780321797094
Rating : 4/5 (94 Downloads)

Book Synopsis Mathematical Proofs by : Gary Chartrand

Download or read book Mathematical Proofs written by Gary Chartrand and published by Pearson. This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book prepares students for the more abstract mathematics courses that follow calculus. The author introduces students to proof techniques, analyzing proofs, and writing proofs of their own. It also provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory.

A Transition to Advanced Mathematics

A Transition to Advanced Mathematics
Author :
Publisher : Oxford University Press
Total Pages : 766
Release :
ISBN-10 : 9780199718665
ISBN-13 : 0199718660
Rating : 4/5 (65 Downloads)

Book Synopsis A Transition to Advanced Mathematics by : William Johnston

Download or read book A Transition to Advanced Mathematics written by William Johnston and published by Oxford University Press. This book was released on 2009-07-27 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Transition to Advanced Mathematics: A Survey Course promotes the goals of a "bridge'' course in mathematics, helping to lead students from courses in the calculus sequence (and other courses where they solve problems that involve mathematical calculations) to theoretical upper-level mathematics courses (where they will have to prove theorems and grapple with mathematical abstractions). The text simultaneously promotes the goals of a ``survey'' course, describing the intriguing questions and insights fundamental to many diverse areas of mathematics, including Logic, Abstract Algebra, Number Theory, Real Analysis, Statistics, Graph Theory, and Complex Analysis. The main objective is "to bring about a deep change in the mathematical character of students -- how they think and their fundamental perspectives on the world of mathematics." This text promotes three major mathematical traits in a meaningful, transformative way: to develop an ability to communicate with precise language, to use mathematically sound reasoning, and to ask probing questions about mathematics. In short, we hope that working through A Transition to Advanced Mathematics encourages students to become mathematicians in the fullest sense of the word. A Transition to Advanced Mathematics has a number of distinctive features that enable this transformational experience. Embedded Questions and Reading Questions illustrate and explain fundamental concepts, allowing students to test their understanding of ideas independent of the exercise sets. The text has extensive, diverse Exercises Sets; with an average of 70 exercises at the end of section, as well as almost 3,000 distinct exercises. In addition, every chapter includes a section that explores an application of the theoretical ideas being studied. We have also interwoven embedded reflections on the history, culture, and philosophy of mathematics throughout the text.

A Discrete Transition to Advanced Mathematics

A Discrete Transition to Advanced Mathematics
Author :
Publisher : American Mathematical Soc.
Total Pages : 434
Release :
ISBN-10 : 9780821847893
ISBN-13 : 0821847899
Rating : 4/5 (93 Downloads)

Book Synopsis A Discrete Transition to Advanced Mathematics by : Bettina Richmond

Download or read book A Discrete Transition to Advanced Mathematics written by Bettina Richmond and published by American Mathematical Soc.. This book was released on 2009 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the title indicates, this book is intended for courses aimed at bridging the gap between lower-level mathematics and advanced mathematics. The text provides a careful introduction to techniques for writing proofs and a logical development of topics based on intuitive understanding of concepts. The authors utilize a clear writing style and a wealth of examples to develop an understanding of discrete mathematics and critical thinking skills. While including many traditional topics, the text offers innovative material throughout. Surprising results are used to motivate the reader. The last three chapters address topics such as continued fractions, infinite arithmetic, and the interplay among Fibonacci numbers, Pascal's triangle, and the golden ratio, and may be used for independent reading assignments. The treatment of sequences may be used to introduce epsilon-delta proofs. The selection of topics provides flexibility for the instructor in a course designed to spark the interest of students through exciting material while preparing them for subsequent proof-based courses.

Elementary Point-Set Topology

Elementary Point-Set Topology
Author :
Publisher : Courier Dover Publications
Total Pages : 260
Release :
ISBN-10 : 9780486811017
ISBN-13 : 0486811018
Rating : 4/5 (17 Downloads)

Book Synopsis Elementary Point-Set Topology by : Andre L. Yandl

Download or read book Elementary Point-Set Topology written by Andre L. Yandl and published by Courier Dover Publications. This book was released on 2016-04-10 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition to serving as an introduction to the basics of point-set topology, this text bridges the gap between the elementary calculus sequence and higher-level mathematics courses. The versatile, original approach focuses on learning to read and write proofs rather than covering advanced topics. Based on lecture notes that were developed over many years at The University of Seattle, the treatment is geared toward undergraduate math majors and suitable for a variety of introductory courses. Starting with elementary concepts in logic and basic techniques of proof writing, the text defines topological and metric spaces and surveys continuity and homeomorphism. Additional subjects include product spaces, connectedness, and compactness. The final chapter illustrates topology's use in other branches of mathematics with proofs of the fundamental theorem of algebra and of Picard's existence theorem for differential equations. "This is a back-to-basics introductory text in point-set topology that can double as a transition to proofs course. The writing is very clear, not too concise or too wordy. Each section of the book ends with a large number of exercises. The optional first chapter covers set theory and proof methods; if the students already know this material you can start with Chapter 2 to present a straight topology course, otherwise the book can be used as an introduction to proofs course also." — Mathematical Association of America

Advanced Mathematics

Advanced Mathematics
Author :
Publisher : John Wiley & Sons
Total Pages : 573
Release :
ISBN-10 : 9781119563532
ISBN-13 : 1119563534
Rating : 4/5 (32 Downloads)

Book Synopsis Advanced Mathematics by : Stanley J. Farlow

Download or read book Advanced Mathematics written by Stanley J. Farlow and published by John Wiley & Sons. This book was released on 2019-10-02 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.

Discovering Group Theory

Discovering Group Theory
Author :
Publisher : CRC Press
Total Pages : 286
Release :
ISBN-10 : 9781315405766
ISBN-13 : 1315405768
Rating : 4/5 (66 Downloads)

Book Synopsis Discovering Group Theory by : Tony Barnard

Download or read book Discovering Group Theory written by Tony Barnard and published by CRC Press. This book was released on 2016-12-19 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discovering Group Theory: A Transition to Advanced Mathematics presents the usual material that is found in a first course on groups and then does a bit more. The book is intended for students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics. The book gives a number of examples of groups and subgroups, including permutation groups, dihedral groups, and groups of integer residue classes. The book goes on to study cosets and finishes with the first isomorphism theorem. Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowledge of some of the properties of integers, such as knowing how to factorize integers into prime factors. The book aims to help students with the transition from concrete to abstract mathematical thinking.