A Guide to Spectral Theory

A Guide to Spectral Theory
Author :
Publisher : Springer Nature
Total Pages : 258
Release :
ISBN-10 : 9783030674625
ISBN-13 : 3030674622
Rating : 4/5 (25 Downloads)

Book Synopsis A Guide to Spectral Theory by : Christophe Cheverry

Download or read book A Guide to Spectral Theory written by Christophe Cheverry and published by Springer Nature. This book was released on 2021-05-06 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a graduate-level introduction to the spectral theory of linear operators on Banach and Hilbert spaces, guiding readers through key components of spectral theory and its applications in quantum physics. Based on their extensive teaching experience, the authors present topics in a progressive manner so that each chapter builds on the ones preceding. Researchers and students alike will also appreciate the exploration of more advanced applications and research perspectives presented near the end of the book. Beginning with a brief introduction to the relationship between spectral theory and quantum physics, the authors go on to explore unbounded operators, analyzing closed, adjoint, and self-adjoint operators. Next, the spectrum of a closed operator is defined and the fundamental properties of Fredholm operators are introduced. The authors then develop the Grushin method to execute the spectral analysis of compact operators. The chapters that follow are devoted to examining Hille-Yoshida and Stone theorems, the spectral analysis of self-adjoint operators, and trace-class and Hilbert-Schmidt operators. The final chapter opens the discussion to several selected applications. Throughout this textbook, detailed proofs are given, and the statements are illustrated by a number of well-chosen examples. At the end, an appendix about foundational functional analysis theorems is provided to help the uninitiated reader. A Guide to Spectral Theory: Applications and Exercises is intended for graduate students taking an introductory course in spectral theory or operator theory. A background in linear functional analysis and partial differential equations is assumed; basic knowledge of bounded linear operators is useful but not required. PhD students and researchers will also find this volume to be of interest, particularly the research directions provided in later chapters.

Spectral Mapping Theorems

Spectral Mapping Theorems
Author :
Publisher : Springer
Total Pages : 132
Release :
ISBN-10 : 9783319056487
ISBN-13 : 3319056484
Rating : 4/5 (87 Downloads)

Book Synopsis Spectral Mapping Theorems by : Robin Harte

Download or read book Spectral Mapping Theorems written by Robin Harte and published by Springer. This book was released on 2014-04-29 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by an author who was at the forefront of developments in multi-variable spectral theory during the seventies and the eighties, this guide sets out to describe in detail the spectral mapping theorem in one, several and many variables. The basic algebraic systems – semigroups, rings and linear algebras – are summarised, and then topological-algebraic systems, including Banach algebras, to set up the basic language of algebra and analysis. Spectral Mapping Theorems is written in an easy-to-read and engaging manner and will be useful for both the beginner and expert. It will be of great importance to researchers and postgraduates studying spectral theory.

A User's Guide to Spectral Sequences

A User's Guide to Spectral Sequences
Author :
Publisher : Cambridge University Press
Total Pages : 579
Release :
ISBN-10 : 9780521567596
ISBN-13 : 0521567599
Rating : 4/5 (96 Downloads)

Book Synopsis A User's Guide to Spectral Sequences by : John McCleary

Download or read book A User's Guide to Spectral Sequences written by John McCleary and published by Cambridge University Press. This book was released on 2001 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.

A Guide to Functional Analysis

A Guide to Functional Analysis
Author :
Publisher : MAA
Total Pages : 151
Release :
ISBN-10 : 9780883853573
ISBN-13 : 0883853574
Rating : 4/5 (73 Downloads)

Book Synopsis A Guide to Functional Analysis by : Steven G. Krantz

Download or read book A Guide to Functional Analysis written by Steven G. Krantz and published by MAA. This book was released on 2013-06-06 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a quick but precise and careful introduction to the subject of functional analysis. It covers the basic topics that can be found in a basic graduate analysis text. But it also covers more sophisticated topics such as spectral theory, convexity, and fixed-point theorems. A special feature of the book is that it contains a great many examples and even some applications. It concludes with a statement and proof of Lomonosov's dramatic result about invariant subspaces.

Inverse Spectral and Scattering Theory

Inverse Spectral and Scattering Theory
Author :
Publisher : Springer Nature
Total Pages : 130
Release :
ISBN-10 : 9789811581991
ISBN-13 : 9811581991
Rating : 4/5 (91 Downloads)

Book Synopsis Inverse Spectral and Scattering Theory by : Hiroshi Isozaki

Download or read book Inverse Spectral and Scattering Theory written by Hiroshi Isozaki and published by Springer Nature. This book was released on 2020-09-26 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide basic knowledge of the inverse problems arising in various areas in mathematics, physics, engineering, and medical science. These practical problems boil down to the mathematical question in which one tries to recover the operator (coefficients) or the domain (manifolds) from spectral data. The characteristic properties of the operators in question are often reduced to those of Schrödinger operators. We start from the 1-dimensional theory to observe the main features of inverse spectral problems and then proceed to multi-dimensions. The first milestone is the Borg–Levinson theorem in the inverse Dirichlet problem in a bounded domain elucidating basic motivation of the inverse problem as well as the difference between 1-dimension and multi-dimension. The main theme is the inverse scattering, in which the spectral data is Heisenberg’s S-matrix defined through the observation of the asymptotic behavior at infinity of solutions. Significant progress has been made in the past 30 years by using the Faddeev–Green function or the complex geometrical optics solution by Sylvester and Uhlmann, which made it possible to reconstruct the potential from the S-matrix of one fixed energy. One can also prove the equivalence of the knowledge of S-matrix and that of the Dirichlet-to-Neumann map for boundary value problems in bounded domains. We apply this idea also to the Dirac equation, the Maxwell equation, and discrete Schrödinger operators on perturbed lattices. Our final topic is the boundary control method introduced by Belishev and Kurylev, which is for the moment the only systematic method for the reconstruction of the Riemannian metric from the boundary observation, which we apply to the inverse scattering on non-compact manifolds. We stress that this book focuses on the lucid exposition of these problems and mathematical backgrounds by explaining the basic knowledge of functional analysis and spectral theory, omitting the technical details in order to make the book accessible to graduate students as an introduction to partial differential equations (PDEs) and functional analysis.

Spectral Theory and Differential Operators

Spectral Theory and Differential Operators
Author :
Publisher : Oxford University Press
Total Pages : 610
Release :
ISBN-10 : 9780198812050
ISBN-13 : 0198812051
Rating : 4/5 (50 Downloads)

Book Synopsis Spectral Theory and Differential Operators by : David Eric Edmunds

Download or read book Spectral Theory and Differential Operators written by David Eric Edmunds and published by Oxford University Press. This book was released on 2018 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.

Introduction to Spectral Theory

Introduction to Spectral Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 544
Release :
ISBN-10 : 0821886630
ISBN-13 : 9780821886632
Rating : 4/5 (30 Downloads)

Book Synopsis Introduction to Spectral Theory by : Boris Moiseevich Levitan

Download or read book Introduction to Spectral Theory written by Boris Moiseevich Levitan and published by American Mathematical Soc.. This book was released on 1975 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: