A Conversational Introduction to Algebraic Number Theory

A Conversational Introduction to Algebraic Number Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 329
Release :
ISBN-10 : 9781470436537
ISBN-13 : 1470436531
Rating : 4/5 (37 Downloads)

Book Synopsis A Conversational Introduction to Algebraic Number Theory by : Paul Pollack

Download or read book A Conversational Introduction to Algebraic Number Theory written by Paul Pollack and published by American Mathematical Soc.. This book was released on 2017-08-01 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.

Steps into Analytic Number Theory

Steps into Analytic Number Theory
Author :
Publisher : Springer Nature
Total Pages : 191
Release :
ISBN-10 : 9783030650773
ISBN-13 : 3030650774
Rating : 4/5 (73 Downloads)

Book Synopsis Steps into Analytic Number Theory by : Paul Pollack

Download or read book Steps into Analytic Number Theory written by Paul Pollack and published by Springer Nature. This book was released on 2021-02-08 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: This problem book gathers together 15 problem sets on analytic number theory that can be profitably approached by anyone from advanced high school students to those pursuing graduate studies. It emerged from a 5-week course taught by the first author as part of the 2019 Ross/Asia Mathematics Program held from July 7 to August 9 in Zhenjiang, China. While it is recommended that the reader has a solid background in mathematical problem solving (as from training for mathematical contests), no possession of advanced subject-matter knowledge is assumed. Most of the solutions require nothing more than elementary number theory and a good grasp of calculus. Problems touch at key topics like the value-distribution of arithmetic functions, the distribution of prime numbers, the distribution of squares and nonsquares modulo a prime number, Dirichlet's theorem on primes in arithmetic progressions, and more. This book is suitable for any student with a special interest in developing problem-solving skills in analytic number theory. It will be an invaluable aid to lecturers and students as a supplementary text for introductory Analytic Number Theory courses at both the undergraduate and graduate level.

Not Always Buried Deep

Not Always Buried Deep
Author :
Publisher : American Mathematical Soc.
Total Pages : 322
Release :
ISBN-10 : 9780821848807
ISBN-13 : 0821848801
Rating : 4/5 (07 Downloads)

Book Synopsis Not Always Buried Deep by : Paul Pollack

Download or read book Not Always Buried Deep written by Paul Pollack and published by American Mathematical Soc.. This book was released on 2009-10-14 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number theory is one of the few areas of mathematics where problems of substantial interest can be fully described to someone with minimal mathematical background. Solving such problems sometimes requires difficult and deep methods. But this is not a universal phenomenon; many engaging problems can be successfully attacked with little more than one's mathematical bare hands. In this case one says that the problem can be solved in an elementary way. Such elementary methods and the problems to which they apply are the subject of this book. Not Always Buried Deep is designed to be read and enjoyed by those who wish to explore elementary methods in modern number theory. The heart of the book is a thorough introduction to elementary prime number theory, including Dirichlet's theorem on primes in arithmetic progressions, the Brun sieve, and the Erdos-Selberg proof of the prime number theorem. Rather than trying to present a comprehensive treatise, Pollack focuses on topics that are particularly attractive and accessible. Other topics covered include Gauss's theory of cyclotomy and its applications to rational reciprocity laws, Hilbert's solution to Waring's problem, and modern work on perfect numbers. The nature of the material means that little is required in terms of prerequisites: The reader is expected to have prior familiarity with number theory at the level of an undergraduate course and a first course in modern algebra (covering groups, rings, and fields). The exposition is complemented by over 200 exercises and 400 references.

Thinking Algebraically: An Introduction to Abstract Algebra

Thinking Algebraically: An Introduction to Abstract Algebra
Author :
Publisher : American Mathematical Soc.
Total Pages : 478
Release :
ISBN-10 : 9781470460303
ISBN-13 : 1470460300
Rating : 4/5 (03 Downloads)

Book Synopsis Thinking Algebraically: An Introduction to Abstract Algebra by : Thomas Q. Sibley

Download or read book Thinking Algebraically: An Introduction to Abstract Algebra written by Thomas Q. Sibley and published by American Mathematical Soc.. This book was released on 2021-06-08 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thinking Algebraically presents the insights of abstract algebra in a welcoming and accessible way. It succeeds in combining the advantages of rings-first and groups-first approaches while avoiding the disadvantages. After an historical overview, the first chapter studies familiar examples and elementary properties of groups and rings simultaneously to motivate the modern understanding of algebra. The text builds intuition for abstract algebra starting from high school algebra. In addition to the standard number systems, polynomials, vectors, and matrices, the first chapter introduces modular arithmetic and dihedral groups. The second chapter builds on these basic examples and properties, enabling students to learn structural ideas common to rings and groups: isomorphism, homomorphism, and direct product. The third chapter investigates introductory group theory. Later chapters delve more deeply into groups, rings, and fields, including Galois theory, and they also introduce other topics, such as lattices. The exposition is clear and conversational throughout. The book has numerous exercises in each section as well as supplemental exercises and projects for each chapter. Many examples and well over 100 figures provide support for learning. Short biographies introduce the mathematicians who proved many of the results. The book presents a pathway to algebraic thinking in a semester- or year-long algebra course.

Number Fields

Number Fields
Author :
Publisher : Springer
Total Pages : 213
Release :
ISBN-10 : 9783319902333
ISBN-13 : 3319902334
Rating : 4/5 (33 Downloads)

Book Synopsis Number Fields by : Daniel A. Marcus

Download or read book Number Fields written by Daniel A. Marcus and published by Springer. This book was released on 2018-07-05 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.

Algebraic Number Theory

Algebraic Number Theory
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 3642084737
ISBN-13 : 9783642084737
Rating : 4/5 (37 Downloads)

Book Synopsis Algebraic Number Theory by : Jürgen Neukirch

Download or read book Algebraic Number Theory written by Jürgen Neukirch and published by Springer. This book was released on 2010-12-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to algebraic number theory discusses the classical concepts from the viewpoint of Arakelov theory. The treatment of class theory is particularly rich in illustrating complements, offering hints for further study, and providing concrete examples. It is the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available.

数论导引

数论导引
Author :
Publisher :
Total Pages : 435
Release :
ISBN-10 : 7115156115
ISBN-13 : 9787115156112
Rating : 4/5 (15 Downloads)

Book Synopsis 数论导引 by :

Download or read book 数论导引 written by and published by . This book was released on 2007 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: 本书内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分化等。