A Concise Introduction to Decentralized POMDPs

A Concise Introduction to Decentralized POMDPs
Author :
Publisher : Springer
Total Pages : 146
Release :
ISBN-10 : 9783319289298
ISBN-13 : 3319289292
Rating : 4/5 (98 Downloads)

Book Synopsis A Concise Introduction to Decentralized POMDPs by : Frans A. Oliehoek

Download or read book A Concise Introduction to Decentralized POMDPs written by Frans A. Oliehoek and published by Springer. This book was released on 2016-06-03 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: reinforcement learning, decision-theoretic planning for single agents, classical multiagent planning, decentralized control, and operations research.

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence
Author :
Publisher : Springer Nature
Total Pages : 71
Release :
ISBN-10 : 9783031015434
ISBN-13 : 3031015436
Rating : 4/5 (34 Downloads)

Book Synopsis A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence by : Nikos Kolobov

Download or read book A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence written by Nikos Kolobov and published by Springer Nature. This book was released on 2022-06-01 with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiagent systems is an expanding field that blends classical fields like game theory and decentralized control with modern fields like computer science and machine learning. This monograph provides a concise introduction to the subject, covering the theoretical foundations as well as more recent developments in a coherent and readable manner. The text is centered on the concept of an agent as decision maker. Chapter 1 is a short introduction to the field of multiagent systems. Chapter 2 covers the basic theory of singleagent decision making under uncertainty. Chapter 3 is a brief introduction to game theory, explaining classical concepts like Nash equilibrium. Chapter 4 deals with the fundamental problem of coordinating a team of collaborative agents. Chapter 5 studies the problem of multiagent reasoning and decision making under partial observability. Chapter 6 focuses on the design of protocols that are stable against manipulations by self-interested agents. Chapter 7 provides a short introduction to the rapidly expanding field of multiagent reinforcement learning. The material can be used for teaching a half-semester course on multiagent systems covering, roughly, one chapter per lecture.

A Concise Introduction to Models and Methods for Automated Planning

A Concise Introduction to Models and Methods for Automated Planning
Author :
Publisher : Springer Nature
Total Pages : 132
Release :
ISBN-10 : 9783031015649
ISBN-13 : 3031015649
Rating : 4/5 (49 Downloads)

Book Synopsis A Concise Introduction to Models and Methods for Automated Planning by : Hector Radanovic

Download or read book A Concise Introduction to Models and Methods for Automated Planning written by Hector Radanovic and published by Springer Nature. This book was released on 2022-05-31 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning is the model-based approach to autonomous behavior where the agent behavior is derived automatically from a model of the actions, sensors, and goals. The main challenges in planning are computational as all models, whether featuring uncertainty and feedback or not, are intractable in the worst case when represented in compact form. In this book, we look at a variety of models used in AI planning, and at the methods that have been developed for solving them. The goal is to provide a modern and coherent view of planning that is precise, concise, and mostly self-contained, without being shallow. For this, we make no attempt at covering the whole variety of planning approaches, ideas, and applications, and focus on the essentials. The target audience of the book are students and researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive science perspective. Table of Contents: Preface / Planning and Autonomous Behavior / Classical Planning: Full Information and Deterministic Actions / Classical Planning: Variations and Extensions / Beyond Classical Planning: Transformations / Planning with Sensing: Logical Models / MDP Planning: Stochastic Actions and Full Feedback / POMDP Planning: Stochastic Actions and Partial Feedback / Discussion / Bibliography / Author's Biography

Deep Reinforcement Learning

Deep Reinforcement Learning
Author :
Publisher : Springer Nature
Total Pages : 414
Release :
ISBN-10 : 9789811906381
ISBN-13 : 9811906386
Rating : 4/5 (81 Downloads)

Book Synopsis Deep Reinforcement Learning by : Aske Plaat

Download or read book Deep Reinforcement Learning written by Aske Plaat and published by Springer Nature. This book was released on 2022-06-10 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep reinforcement learning has attracted considerable attention recently. Impressive results have been achieved in such diverse fields as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to understand problems that were previously considered to be very difficult. In the game of Go, the program AlphaGo has even learned to outmatch three of the world’s leading players.Deep reinforcement learning takes its inspiration from the fields of biology and psychology. Biology has inspired the creation of artificial neural networks and deep learning, while psychology studies how animals and humans learn, and how subjects’ desired behavior can be reinforced with positive and negative stimuli. When we see how reinforcement learning teaches a simulated robot to walk, we are reminded of how children learn, through playful exploration. Techniques that are inspired by biology and psychology work amazingly well in computers: animal behavior and the structure of the brain as new blueprints for science and engineering. In fact, computers truly seem to possess aspects of human behavior; as such, this field goes to the heart of the dream of artificial intelligence. These research advances have not gone unnoticed by educators. Many universities have begun offering courses on the subject of deep reinforcement learning. The aim of this book is to provide an overview of the field, at the proper level of detail for a graduate course in artificial intelligence. It covers the complete field, from the basic algorithms of Deep Q-learning, to advanced topics such as multi-agent reinforcement learning and meta learning.

Algorithms for Decision Making

Algorithms for Decision Making
Author :
Publisher : MIT Press
Total Pages : 701
Release :
ISBN-10 : 9780262370233
ISBN-13 : 0262370239
Rating : 4/5 (33 Downloads)

Book Synopsis Algorithms for Decision Making by : Mykel J. Kochenderfer

Download or read book Algorithms for Decision Making written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2022-08-16 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.

Handbook of Reinforcement Learning and Control

Handbook of Reinforcement Learning and Control
Author :
Publisher : Springer Nature
Total Pages : 833
Release :
ISBN-10 : 9783030609900
ISBN-13 : 3030609901
Rating : 4/5 (00 Downloads)

Book Synopsis Handbook of Reinforcement Learning and Control by : Kyriakos G. Vamvoudakis

Download or read book Handbook of Reinforcement Learning and Control written by Kyriakos G. Vamvoudakis and published by Springer Nature. This book was released on 2021-06-23 with total page 833 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases
Author :
Publisher : Springer Nature
Total Pages : 680
Release :
ISBN-10 : 9783031264122
ISBN-13 : 3031264126
Rating : 4/5 (22 Downloads)

Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Massih-Reza Amini

Download or read book Machine Learning and Knowledge Discovery in Databases written by Massih-Reza Amini and published by Springer Nature. This book was released on 2023-03-16 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022. The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems; Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search; Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning; Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability; Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.