Author |
: Anestis Antoniadis |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 407 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461225447 |
ISBN-13 |
: 1461225442 |
Rating |
: 4/5 (47 Downloads) |
Book Synopsis Wavelets and Statistics by : Anestis Antoniadis
Download or read book Wavelets and Statistics written by Anestis Antoniadis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite its short history, wavelet theory has found applications in a remarkable diversity of disciplines: mathematics, physics, numerical analysis, signal processing, probability theory and statistics. The abundance of intriguing and useful features enjoyed by wavelet and wavelet packed transforms has led to their application to a wide range of statistical and signal processing problems. On November 16-18, 1994, a conference on Wavelets and Statistics was held at Villard de Lans, France, organized by the Institute IMAG-LMC, Grenoble, France. The meeting was the 15th in the series of the Rencontres Pranco-Belges des 8tatisticiens and was attended by 74 mathematicians from 12 different countries. Following tradition, both theoretical statistical results and practical contributions of this active field of statistical research were presented. The editors and the local organizers hope that this volume reflects the broad spectrum of the conference. as it includes 21 articles contributed by specialists in various areas in this field. The material compiled is fairly wide in scope and ranges from the development of new tools for non parametric curve estimation to applied problems, such as detection of transients in signal processing and image segmentation. The articles are arranged in alphabetical order by author rather than subject matter. However, to help the reader, a subjective classification of the articles is provided at the end of the book. Several articles of this volume are directly or indirectly concerned with several as pects of wavelet-based function estimation and signal denoising.